On a conjecture concerning total domination subdivision number in graphs

被引:1
|
作者
Kosari, S. [1 ]
Shao, Z. [1 ]
Khoeilar, R. [2 ]
Karami, H. [2 ]
Sheikholeslami, S. M. [2 ]
Hao, G. [3 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou, Peoples R China
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] East China Univ Technol, Coll Sci, Nanchang, Jiangxi, Peoples R China
关键词
Total domination; total domination subdivision number; claw-free graphs;
D O I
10.1080/09728600.2021.1985386
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let gamma(t) (G) be the total domination number and let sd(gamma t)(G) be the total domination subdivision number of a graph G with no isolated vertex. In this paper, we show that sd(gamma t)(G) <= gamma(t) (G)/2 + 2 for some classes of graphs G, which partially solve the conjecture presented by Favaron et al.
引用
收藏
页码:154 / 157
页数:4
相关论文
共 50 条
  • [1] On two conjectures concerning total domination subdivision number in graphs
    Khoeilar, Rana
    Karami, Hossein
    Sheikholeslami, Seyed Mahmoud
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 333 - 340
  • [2] On two conjectures concerning total domination subdivision number in graphs
    Rana Khoeilar
    Hossein Karami
    Seyed Mahmoud Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2019, 38 : 333 - 340
  • [3] On the Total Domination Subdivision Number in Graphs
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (01) : 173 - 180
  • [4] Disjunctive Total Domination Subdivision Number of Graphs
    Ciftci, Canan
    Aytac, Vecdi
    [J]. FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 15 - 26
  • [5] Total Roman domination subdivision number in graphs
    Amjadi, Jafar
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (02) : 157 - 168
  • [6] On the total domination subdivision number in some classes of graphs
    O. Favaron
    H. Karami
    R. Khoeilar
    S. M. Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2010, 20 : 76 - 84
  • [7] On the total domination subdivision number in some classes of graphs
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 20 (01) : 76 - 84
  • [8] Results on Total Restrained Domination number and subdivision number for certain graphs
    Jeyanthi, P.
    Hemalatha, G.
    Davvaz, B.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (04): : 363 - 369
  • [9] Total k-rainbow domination subdivision number in graphs
    Khoeilar, Rana
    Kheibari, Mahla
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    [J]. COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2020, 28 (02) : 152 - 169
  • [10] Roman domination subdivision number of graphs
    M. Atapour
    S. M. Sheikholeslami
    Abdollah Khodkar
    [J]. Aequationes mathematicae, 2009, 78