On the Total Domination Subdivision Number in Graphs

被引:0
|
作者
Favaron, O. [1 ,2 ]
Karami, H. [3 ]
Khoeilar, R. [3 ]
Sheikholeslami, S. M. [3 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Matching; barrier; total domination number; total domination subdivision number; TOTAL (K)-DOMATIC NUMBER; TOTAL (K)-DOMINATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S subset of V of vertices in a graph G = (V, E) without isolated vertices is a total dominating set if every vertex of V is adjacent to some vertex in S. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sd(gamma t)(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that sd(gamma t)(G) <= alpha'(G) + 1 for some classes of graphs where alpha'(G) is the maximum cardinality of a matching of G.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [1] Disjunctive Total Domination Subdivision Number of Graphs
    Ciftci, Canan
    Aytac, Vecdi
    [J]. FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 15 - 26
  • [2] Total Roman domination subdivision number in graphs
    Amjadi, Jafar
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (02) : 157 - 168
  • [3] On a conjecture concerning total domination subdivision number in graphs
    Kosari, S.
    Shao, Z.
    Khoeilar, R.
    Karami, H.
    Sheikholeslami, S. M.
    Hao, G.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 154 - 157
  • [4] On the total domination subdivision number in some classes of graphs
    O. Favaron
    H. Karami
    R. Khoeilar
    S. M. Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2010, 20 : 76 - 84
  • [5] On the total domination subdivision number in some classes of graphs
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 20 (01) : 76 - 84
  • [6] Results on Total Restrained Domination number and subdivision number for certain graphs
    Jeyanthi, P.
    Hemalatha, G.
    Davvaz, B.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (04): : 363 - 369
  • [7] Total k-rainbow domination subdivision number in graphs
    Khoeilar, Rana
    Kheibari, Mahla
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    [J]. COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2020, 28 (02) : 152 - 169
  • [8] On two conjectures concerning total domination subdivision number in graphs
    Khoeilar, Rana
    Karami, Hossein
    Sheikholeslami, Seyed Mahmoud
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 333 - 340
  • [9] On two conjectures concerning total domination subdivision number in graphs
    Rana Khoeilar
    Hossein Karami
    Seyed Mahmoud Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2019, 38 : 333 - 340
  • [10] Roman domination subdivision number of graphs
    M. Atapour
    S. M. Sheikholeslami
    Abdollah Khodkar
    [J]. Aequationes mathematicae, 2009, 78