On the Total Domination Subdivision Number in Graphs

被引:0
|
作者
Favaron, O. [1 ,2 ]
Karami, H. [3 ]
Khoeilar, R. [3 ]
Sheikholeslami, S. M. [3 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Matching; barrier; total domination number; total domination subdivision number; TOTAL (K)-DOMATIC NUMBER; TOTAL (K)-DOMINATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S subset of V of vertices in a graph G = (V, E) without isolated vertices is a total dominating set if every vertex of V is adjacent to some vertex in S. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sd(gamma t)(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that sd(gamma t)(G) <= alpha'(G) + 1 for some classes of graphs where alpha'(G) is the maximum cardinality of a matching of G.
引用
下载
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [31] TOTAL DOMINATION NUMBER OF CENTRAL GRAPHS
    Kazemnejad, Farshad
    Moradi, Somayeh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 1059 - 1075
  • [32] Total domination number of grid graphs
    Gravier, S
    DISCRETE APPLIED MATHEMATICS, 2002, 121 (1-3) : 119 - 128
  • [33] Graphs with large total domination number
    Henning, MA
    JOURNAL OF GRAPH THEORY, 2000, 35 (01) : 21 - 45
  • [34] The total domination subdivision number in graphs with no induced 3-cycle and 5-cycle
    H. Karami
    R. Khoeilar
    S. M. Sheikholeslami
    Journal of Combinatorial Optimization, 2013, 25 : 91 - 98
  • [35] On the total Roman domination number of graphs
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Sheikholeslami, S. M.
    Soroudi, M.
    ARS COMBINATORIA, 2020, 150 : 225 - 240
  • [36] The total domination subdivision number in graphs with no induced 3-cycle and 5-cycle
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (01) : 91 - 98
  • [37] TOTAL ROMAN DOMINATION NUMBER OF GRAPHS
    Thakkar, D. K.
    Badiyani, S. M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 445 - 455
  • [38] On the total Roman domination number of graphs
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Sheikholeslami, S. M.
    Soroudi, M.
    ARS COMBINATORIA, 2020, 151 : 295 - 310
  • [39] On graphs for which the connected domination number is at most the total domination number
    Schaudt, Oliver
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1281 - 1284
  • [40] An Upper Bound for the Total Domination Subdivision Number of a Graph
    H. Karami
    R. Khoeilar
    S. M. Sheikholeslami
    A. Khodkar
    Graphs and Combinatorics, 2009, 25 : 727 - 733