On the Total Domination Subdivision Number in Graphs

被引:0
|
作者
Favaron, O. [1 ,2 ]
Karami, H. [3 ]
Khoeilar, R. [3 ]
Sheikholeslami, S. M. [3 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Matching; barrier; total domination number; total domination subdivision number; TOTAL (K)-DOMATIC NUMBER; TOTAL (K)-DOMINATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S subset of V of vertices in a graph G = (V, E) without isolated vertices is a total dominating set if every vertex of V is adjacent to some vertex in S. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sd(gamma t)(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that sd(gamma t)(G) <= alpha'(G) + 1 for some classes of graphs where alpha'(G) is the maximum cardinality of a matching of G.
引用
下载
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [21] DOMINATION NUMBER OF TOTAL GRAPHS
    Shariatinia, Abbas
    Maimani, Hamid Reza
    Yassemi, Siamak
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1527 - 1535
  • [22] A New Bound on the Total Domination Subdivision Number
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    GRAPHS AND COMBINATORICS, 2009, 25 (01) : 41 - 47
  • [23] Game total domination subdivision number of a graph
    Amjadi, J.
    Karami, H.
    Sheikholeslami, S. M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (03)
  • [24] A New Bound on the Total Domination Subdivision Number
    O. Favaron
    H. Karami
    R. Khoeilar
    S. M. Sheikholeslami
    Graphs and Combinatorics, 2009, 25 : 41 - 47
  • [25] 2-rainbow domination number of the subdivision of graphs
    Salkhori, Rostam Yarke
    Vatandoost, Ebrahim
    Behtoei, Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [26] Some Graphs with Double Domination Subdivision Number Three
    Haoli Wang
    Xirong Xu
    Yuansheng Yang
    Baosheng Zhang
    Graphs and Combinatorics, 2014, 30 : 247 - 251
  • [27] Total domination number of the conjunction of graphs
    Zwierzchowski, Maciej
    DISCRETE MATHEMATICS, 2007, 307 (7-8) : 1016 - 1020
  • [28] The Signed Total Domination Number of Graphs
    Gao, Mingjing
    Shan, Erfang
    ARS COMBINATORIA, 2011, 98 : 15 - 24
  • [29] On the Secure Total Domination Number of Graphs
    Cabrera Martinez, Abel
    Montejano, Luis P.
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2019, 11 (09):
  • [30] Total domination number of middle graphs
    Kazemnejad, Farshad
    Pahlavsay, Behnaz
    Palezzato, Elisa
    Torielli, Michele
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 275 - 288