Some Graphs with Double Domination Subdivision Number Three

被引:0
|
作者
Haoli Wang
Xirong Xu
Yuansheng Yang
Baosheng Zhang
机构
[1] College of Computer and Information Engineering,Department of Computer Science
[2] Tianjin Normal University,undefined
[3] Dalian University of Technology,undefined
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Double domination; Double domination number; Double domination subdivision number;
D O I
暂无
中图分类号
学科分类号
摘要
A subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G)}$$\end{document} is a double dominating set of G if S dominates every vertex of G at least twice. The double domination numberdd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision number sddd(G) is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the double domination number. Atapour et al. (Discret Appl Math, 155:1700–1707, 2007) posed an open problem: Prove or disprove: let G be a connected graph with no isolated vertices, then 1 ≤ sddd(G) ≤ 2. In this paper, we disprove the problem by constructing some connected graphs with no isolated vertices and double domination subdivision number three.
引用
收藏
页码:247 / 251
页数:4
相关论文
共 50 条
  • [1] Some Graphs with Double Domination Subdivision Number Three (vol 30, pg 247, 2014)
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Zhang, Baosheng
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (01) : 253 - 253
  • [2] Double Roman domination subdivision number in graphs
    Amjadi, J.
    Sadeghi, H.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [3] On the total domination subdivision number in some classes of graphs
    O. Favaron
    H. Karami
    R. Khoeilar
    S. M. Sheikholeslami
    [J]. Journal of Combinatorial Optimization, 2010, 20 : 76 - 84
  • [4] On the total domination subdivision number in some classes of graphs
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 20 (01) : 76 - 84
  • [5] Roman domination subdivision number of graphs
    M. Atapour
    S. M. Sheikholeslami
    Abdollah Khodkar
    [J]. Aequationes mathematicae, 2009, 78
  • [6] Roman domination subdivision number of graphs
    Atapour, M.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    [J]. AEQUATIONES MATHEMATICAE, 2009, 78 (03) : 237 - 245
  • [7] On the Total Domination Subdivision Number in Graphs
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (01) : 173 - 180
  • [8] On [k]-Roman domination subdivision number of graphs
    Haghparast, K.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 261 - 267
  • [9] INVERSE MAJORITY DOMINATION NUMBER ON SUBDIVISION GRAPHS
    Manora, J. Joseline
    Vignesh, S.
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 805 - 817
  • [10] 2-domination subdivision number of graphs
    Atapour, M.
    Sheikholeslami, S.
    Hansberg, A.
    Volkmann, L.
    Khodkart, A.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2008, 5 (02) : 165 - 173