Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number

被引:1
|
作者
Kosari, Saeed [1 ]
Shao, Zehui [1 ]
Sheikholeslami, Seyed Mahmoud [2 ]
Karami, Hossein [2 ]
Volkmann, Lutz [3 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Doubly connected domination number; Doubly connected domination subdivision number;
D O I
10.1007/s41980-021-00586-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices of a connected graph G is a doubly connected dominating set (DCDS) if every vertex not in S is adjacent to some vertex in S and the subgraphs induced by S and V - S are connected. The doubly connected domination number gamma(cc)(G) is the minimum size of such a set. The doubly connected domination subdivision number sd(gamma cc) (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the doubly connected domination number. It was conjectured (Karami et al. in Mat Vesnic 64:232-239, 2012) that the doubly connected domination subdivision number of a connected planar graph is at most two. In this paper, we disprove this conjecture by showing that the doubly connected domination subdivision number of the regular icosahedron graph is three.
引用
收藏
页码:1351 / 1355
页数:5
相关论文
共 50 条
  • [31] On [k]-Roman domination subdivision number of graphs
    Haghparast, K.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 261 - 267
  • [32] Double Roman domination subdivision number in graphs
    Amjadi, J.
    Sadeghi, H.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [33] A New Bound on the Total Domination Subdivision Number
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. GRAPHS AND COMBINATORICS, 2009, 25 (01) : 41 - 47
  • [34] Independent transversal domination subdivision number of trees
    Pushpam, P. Roushini Leely
    Bhanthavi, K. Priya
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [35] INVERSE MAJORITY DOMINATION NUMBER ON SUBDIVISION GRAPHS
    Manora, J. Joseline
    Vignesh, S.
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 805 - 817
  • [36] New Bounds on the Rainbow Domination Subdivision Number
    Falahat, Mohyedin
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    [J]. FILOMAT, 2014, 28 (03) : 615 - 622
  • [37] Game total domination subdivision number of a graph
    Amjadi, J.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (03)
  • [38] 2-domination subdivision number of graphs
    Atapour, M.
    Sheikholeslami, S.
    Hansberg, A.
    Volkmann, L.
    Khodkart, A.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2008, 5 (02) : 165 - 173
  • [39] Triple Roman domination subdivision number in graphs
    Amjadi, J.
    Sadeghi, H.
    [J]. COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (01) : 109 - 130
  • [40] ROMAN GAME DOMINATION SUBDIVISION NUMBER OF A GRAPH
    Amjadi, J.
    Karami, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. TRANSACTIONS ON COMBINATORICS, 2013, 2 (04) : 1 - 12