Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number

被引:1
|
作者
Kosari, Saeed [1 ]
Shao, Zehui [1 ]
Sheikholeslami, Seyed Mahmoud [2 ]
Karami, Hossein [2 ]
Volkmann, Lutz [3 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Doubly connected domination number; Doubly connected domination subdivision number;
D O I
10.1007/s41980-021-00586-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices of a connected graph G is a doubly connected dominating set (DCDS) if every vertex not in S is adjacent to some vertex in S and the subgraphs induced by S and V - S are connected. The doubly connected domination number gamma(cc)(G) is the minimum size of such a set. The doubly connected domination subdivision number sd(gamma cc) (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the doubly connected domination number. It was conjectured (Karami et al. in Mat Vesnic 64:232-239, 2012) that the doubly connected domination subdivision number of a connected planar graph is at most two. In this paper, we disprove this conjecture by showing that the doubly connected domination subdivision number of the regular icosahedron graph is three.
引用
收藏
页码:1351 / 1355
页数:5
相关论文
共 50 条
  • [11] A proof of a conjecture on the paired-domination subdivision number
    Zehui Shao
    Seyed Mahmoud Sheikholeslami
    Mustapha Chellali
    Rana Khoeilar
    Hossein Karami
    [J]. Graphs and Combinatorics, 2022, 38
  • [12] DOUBLY CONNECTED EDGE DOMINATION NUMBER OF A GRAPH
    Anupama, S. B.
    Maralabhavi, Y. B.
    Goudar, Venkanagouda M.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2015, 15 (02): : 91 - 99
  • [13] ON DOUBLY CONNECTED DOMINATION NUMBER OF SOME SPECIAL GRAPHS
    Ahamad, Sherihatha R.
    Aradais, Alkajim A.
    Laja, Ladznar S.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (03): : 203 - 211
  • [14] Inequalities of Nordhaus-Gaddum type for doubly connected domination number
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (14) : 1465 - 1470
  • [15] CONNECTED DOMINATION SUBDIVISION NUMBERS OF GRAPHS
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. UTILITAS MATHEMATICA, 2008, 77 : 101 - 111
  • [16] The Connected Hub Number and the Connected Domination Number
    Johnson, Peter
    Slater, Peter
    Walsh, Matt
    [J]. NETWORKS, 2011, 58 (03) : 232 - 237
  • [17] On the Roman domination subdivision number of a graph
    J. Amjadi
    R. Khoeilar
    M. Chellali
    Z. Shao
    [J]. Journal of Combinatorial Optimization, 2020, 40 : 501 - 511
  • [18] Roman domination subdivision number of graphs
    M. Atapour
    S. M. Sheikholeslami
    Abdollah Khodkar
    [J]. Aequationes mathematicae, 2009, 78
  • [19] Roman domination subdivision number of graphs
    Atapour, M.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    [J]. AEQUATIONES MATHEMATICAE, 2009, 78 (03) : 237 - 245
  • [20] Secure domination subdivision number of a graph
    Rashmi, S. V. Divya
    Somasundaram, A.
    Arumugam, S.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (03)