The Connected Hub Number and the Connected Domination Number

被引:9
|
作者
Johnson, Peter [2 ]
Slater, Peter [3 ]
Walsh, Matt [1 ]
机构
[1] Indiana Purdue Univ Ft Wayne, Dept Math Sci, Ft Wayne, IN USA
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[3] Univ Alabama, Dept Math, Huntsville, AL 35899 USA
关键词
hub; hub number; connected domination; connecting sets;
D O I
10.1002/net.20433
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The connected hub number h(c)(G) of a connected graph G is the smallest order of a connected subgraph H of G such that any two nonadjacent vertices of G-H are joined in G by a path with all internal vertices in H. Letting gamma(c)(G) denote the connected domination number of G, it is easy to see that h(c)(G) <= gamma(c)(G) <= h(c)(G) + 1 for every connected graph G. Here we characterize the graphs G for which gamma(c)(G) = h(c)(G) + 1. Our result contributes to the search for the solution of an extremal problem of (Newman-Wolfe et al., Congressus Numerantium 67 (1988), 67-76). (C) 2011 Wiley Periodicals, Inc. NETWORKS, Vol. 58(3), 232-237 2011
引用
收藏
页码:232 / 237
页数:6
相关论文
共 50 条
  • [1] Average Distance, Connected Hub Number and Connected Domination Number
    Gao, Xiao-Lu
    Xu, Shou-Jun
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (01) : 57 - 75
  • [2] A note on connected domination number and leaf number
    Mafuta, P.
    Mukwembi, S.
    Rodrigues, B. G.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (02)
  • [3] On the number of edges in graphs with a given connected domination number
    Sanchis, LA
    [J]. DISCRETE MATHEMATICS, 2000, 214 (1-3) : 193 - 210
  • [4] On graphs for which the connected domination number is at most the total domination number
    Schaudt, Oliver
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1281 - 1284
  • [5] Bounds relating the weakly connected domination number to the total domination number and the matching number
    Hattingh, Johannes H.
    Henning, Michael A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) : 3086 - 3093
  • [6] The edge domination number of connected graphs
    Chaemchan, Araya
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 185 - 189
  • [7] A Proof of a Conjecture on the Connected Domination Number
    Kosari, S.
    Shao, Z.
    Sheikholeslami, S. M.
    Chellali, M.
    Khoeilar, R.
    Karami, H.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3523 - 3533
  • [8] Bounds on the connected domination number of a graph
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 2925 - 2931
  • [9] A Proof of a Conjecture on the Connected Domination Number
    S. Kosari
    Z. Shao
    S. M. Sheikholeslami
    M. Chellali
    R. Khoeilar
    H. Karami
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3523 - 3533
  • [10] CONNECTED COTOTAL DOMINATION NUMBER OF A GRAPH
    Basavanagoud, B.
    Hosamani, S. M.
    [J]. TRANSACTIONS ON COMBINATORICS, 2012, 1 (02) : 17 - 25