A Proof of a Conjecture on the Connected Domination Number

被引:0
|
作者
S. Kosari
Z. Shao
S. M. Sheikholeslami
M. Chellali
R. Khoeilar
H. Karami
机构
[1] Guangzhou University,Institute of Computing Science and Technology
[2] Azarbaijan Shahid Madani University,Department of Mathematics
[3] University of Blida,LAMDA
关键词
Connected dominating set; Connected domination number; Forbidden induced subgraphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
For a connected graph G, let γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G)$$\end{document} and γc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{c}(G)$$\end{document} denote the domination number and the connected domination number, respectively. Let H be a graph obtained from a triangle abc by adding a pendant edge at a and a pendant path of length 3 at each of b and c. In 2014, Camby and Schaudt conjectured that for any connected {P9,C9,H}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{9},C_{9},H\}$$\end{document}-free graph G, γc(G)≤2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{c}(G)\le 2\gamma (G)$$\end{document}. In this paper, we settle the conjecture in the affirmative.
引用
收藏
页码:3523 / 3533
页数:10
相关论文
共 50 条
  • [1] A Proof of a Conjecture on the Connected Domination Number
    Kosari, S.
    Shao, Z.
    Sheikholeslami, S. M.
    Chellali, M.
    Khoeilar, R.
    Karami, H.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3523 - 3533
  • [2] A proof of a conjecture on the paired-domination subdivision number
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Chellali, Mustapha
    Khoeilar, Rana
    Karami, Hossein
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [3] A proof of a conjecture on the paired-domination subdivision number
    Zehui Shao
    Seyed Mahmoud Sheikholeslami
    Mustapha Chellali
    Rana Khoeilar
    Hossein Karami
    [J]. Graphs and Combinatorics, 2022, 38
  • [4] Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number
    Saeed Kosari
    Zehui Shao
    Seyed Mahmoud Sheikholeslami
    Hossein Karami
    Lutz Volkmann
    [J]. Bulletin of the Iranian Mathematical Society, 2022, 48 : 1351 - 1355
  • [5] Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number
    Kosari, Saeed
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Karami, Hossein
    Volkmann, Lutz
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1351 - 1355
  • [6] A proof of the conjecture regarding the sum of domination number and average eccentricity
    Du, Zhibin
    Ilic, Aleksandar
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 201 : 105 - 113
  • [7] Proof of a Conjecture on Game Domination
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 64 (04) : 323 - 329
  • [8] Proof of a conjecture in domination theory
    Zverovich, IE
    [J]. DISCRETE MATHEMATICS, 1998, 184 (1-3) : 297 - 298
  • [9] The Connected Hub Number and the Connected Domination Number
    Johnson, Peter
    Slater, Peter
    Walsh, Matt
    [J]. NETWORKS, 2011, 58 (03) : 232 - 237
  • [10] Vizing's conjecture for graphs with domination number 3-a new proof
    Bresar, Bostjan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):