A Proof of a Conjecture on the Connected Domination Number

被引:0
|
作者
S. Kosari
Z. Shao
S. M. Sheikholeslami
M. Chellali
R. Khoeilar
H. Karami
机构
[1] Guangzhou University,Institute of Computing Science and Technology
[2] Azarbaijan Shahid Madani University,Department of Mathematics
[3] University of Blida,LAMDA
关键词
Connected dominating set; Connected domination number; Forbidden induced subgraphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
For a connected graph G, let γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G)$$\end{document} and γc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{c}(G)$$\end{document} denote the domination number and the connected domination number, respectively. Let H be a graph obtained from a triangle abc by adding a pendant edge at a and a pendant path of length 3 at each of b and c. In 2014, Camby and Schaudt conjectured that for any connected {P9,C9,H}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{9},C_{9},H\}$$\end{document}-free graph G, γc(G)≤2γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{c}(G)\le 2\gamma (G)$$\end{document}. In this paper, we settle the conjecture in the affirmative.
引用
收藏
页码:3523 / 3533
页数:10
相关论文
共 50 条
  • [11] A proof of a conjecture of minus domination in graphs
    Wang, CX
    Mao, JZ
    [J]. DISCRETE MATHEMATICS, 2002, 256 (1-2) : 519 - 521
  • [12] A proof of a conjecture on matching-path connected size Ramsey number
    Zhang, Yixin
    Zhang, Yanbo
    Zhi, Hexuan
    [J]. AIMS MATHEMATICS, 2023, 8 (04): : 8027 - 8033
  • [13] A conjecture on the lower bound of the signed edge domination number of 2-connected graphs
    Feng, Xing
    Ge, Jun
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 302 : 42 - 45
  • [14] Average Distance, Connected Hub Number and Connected Domination Number
    Gao, Xiao-Lu
    Xu, Shou-Jun
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (01) : 57 - 75
  • [15] On graphs for which the connected domination number is at most the total domination number
    Schaudt, Oliver
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1281 - 1284
  • [16] A note on connected domination number and leaf number
    Mafuta, P.
    Mukwembi, S.
    Rodrigues, B. G.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (02)
  • [17] Bounds relating the weakly connected domination number to the total domination number and the matching number
    Hattingh, Johannes H.
    Henning, Michael A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) : 3086 - 3093
  • [18] A proof of the 3/5-conjecture in the domination game
    Versteegen, Leo
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 122
  • [19] Proof of a conjecture on k-tuple domination in graphs
    Xu, Guangjun
    Kang, Liying
    Shan, Erfang
    Yan, Hong
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (03) : 287 - 290
  • [20] A PROOF OF THE 3/5-CONJECTURE IN THE DOMINATION GAME
    Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge
    CB3 0WB, United Kingdom
    [J]. arXiv, 1600,