Disprove of a conjecture on the double Roman domination number

被引:0
|
作者
Z. Shao
R. Khoeilar
H. Karami
M. Chellali
S. M. Sheikholeslami
机构
[1] Guangzhou University,Institute of Computing Science and Technology
[2] Azarbaijan Shahid Madani University,Department of Mathematics
[3] University of Blida,LAMDA
来源
Aequationes mathematicae | 2024年 / 98卷
关键词
Double Roman domination number; Roman domination; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A double Roman dominating function (DRDF) on a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a function f:V→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V\rightarrow \{0,1,2,3\}$$\end{document} having the property that if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=0$$\end{document}, then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f(w)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)=3$$\end{document}, and if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, then vertex v must have at least one neighbor w with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. The weight of a DRDF is the sum of its function values over all vertices, and the double Roman domination number γdR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{dR}(G)$$\end{document} is the minimum weight of a DRDF on G. Khoeilar et al. (Discrete Appl. Math. 270:159–167, 2019) proved that if G is a connected graph of order n with minimum degree two different from C5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{5}$$\end{document} and C7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{7}$$\end{document}, then γdR(G)≤1110n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{dR}(G)\le \frac{11}{10}n.$$\end{document} Moreover, they presented an infinite family of graphs G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} attaining the upper bound, and conjectured that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} is the only family of extremal graphs reaching the bound. In this paper, we disprove this conjecture by characterizing all extremal graphs for this bound.
引用
收藏
页码:241 / 260
页数:19
相关论文
共 50 条
  • [1] Disprove of a conjecture on the double Roman domination number
    Shao, Z.
    Khoeilar, R.
    Karami, H.
    Chellali, M.
    Sheikholeslami, S. M.
    [J]. AEQUATIONES MATHEMATICAE, 2024, 98 (01) : 241 - 260
  • [2] Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number
    Saeed Kosari
    Zehui Shao
    Seyed Mahmoud Sheikholeslami
    Hossein Karami
    Lutz Volkmann
    [J]. Bulletin of the Iranian Mathematical Society, 2022, 48 : 1351 - 1355
  • [3] Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number
    Kosari, Saeed
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Karami, Hossein
    Volkmann, Lutz
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1351 - 1355
  • [4] Double Roman domination number
    Anu, V
    Lakshmanan, Aparna S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 244 : 198 - 204
  • [5] On the double Roman domination number in trees
    Nazari-Moghaddam, S.
    Chellali, M.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 77 : 256 - 268
  • [6] A note on the Italian domination number and double Roman domination number in graphs
    Hajibaba, Maryam
    Rad, Nader Jafari
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109 : 169 - 183
  • [7] Trees with Double Roman Domination Number Twice the Domination Number Plus Two
    H. Abdollahzadeh Ahangar
    J. Amjadi
    M. Chellali
    S. Nazari-Moghaddam
    S. M. Sheikholeslami
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1081 - 1088
  • [8] Trees with Double Roman Domination Number Twice the Domination Number Plus Two
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Chellali, M.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3): : 1081 - 1088
  • [9] A Note on the Double Roman Domination Number of Graphs
    Chen, Xue-gang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 205 - 212
  • [10] On the Outer Independent Double Roman Domination Number
    Mojdeh, Doost Ali
    Samadi, Babak
    Shao, Zehui
    Yero, Ismael G.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1789 - 1803