Disprove of a conjecture on the double Roman domination number

被引:0
|
作者
Z. Shao
R. Khoeilar
H. Karami
M. Chellali
S. M. Sheikholeslami
机构
[1] Guangzhou University,Institute of Computing Science and Technology
[2] Azarbaijan Shahid Madani University,Department of Mathematics
[3] University of Blida,LAMDA
来源
Aequationes mathematicae | 2024年 / 98卷
关键词
Double Roman domination number; Roman domination; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A double Roman dominating function (DRDF) on a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a function f:V→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V\rightarrow \{0,1,2,3\}$$\end{document} having the property that if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=0$$\end{document}, then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f(w)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)=3$$\end{document}, and if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, then vertex v must have at least one neighbor w with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. The weight of a DRDF is the sum of its function values over all vertices, and the double Roman domination number γdR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{dR}(G)$$\end{document} is the minimum weight of a DRDF on G. Khoeilar et al. (Discrete Appl. Math. 270:159–167, 2019) proved that if G is a connected graph of order n with minimum degree two different from C5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{5}$$\end{document} and C7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{7}$$\end{document}, then γdR(G)≤1110n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{dR}(G)\le \frac{11}{10}n.$$\end{document} Moreover, they presented an infinite family of graphs G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} attaining the upper bound, and conjectured that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} is the only family of extremal graphs reaching the bound. In this paper, we disprove this conjecture by characterizing all extremal graphs for this bound.
引用
收藏
页码:241 / 260
页数:19
相关论文
共 50 条
  • [21] BOUNDS ON THE TOTAL DOUBLE ROMAN DOMINATION NUMBER OF GRAPHS
    Hao, Guoliang
    Xie, Zhihong
    Sheikholeslami, Seyed Mahmoud
    Hajjari, M.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 1033 - 1061
  • [22] Bounds on the Global Double Roman Domination Number in Graphs
    Hao, Guoliang
    Wei, Shouliu
    Sheikholeslami, Seyed Mahmoud
    Chen, Xiaodan
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 539 - 554
  • [23] TREES WITH EQUAL STRONG ROMAN DOMINATION NUMBER AND ROMAN DOMINATION NUMBER
    Chen, Xue-Gang
    Sohn, Moo Young
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 31 - 44
  • [24] Improved upper bound on the double Roman domination number of graphs
    Chen, Xue-gang
    Wu, Xiao-fei
    [J]. ARS COMBINATORIA, 2020, 153 : 245 - 259
  • [25] Extremal Digraphs for an Upper Bound on the Double Roman Domination Number
    Lyes Ouldrabah
    Mostafa Blidia
    Ahmed Bouchou
    Lutz Volkmann
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1153 - 1162
  • [26] Extremal Digraphs for an Upper Bound on the Double Roman Domination Number
    Ouldrabah, Lyes
    Blidia, Mostafa
    Bouchou, Ahmed
    Volkmann, Lutz
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1153 - 1162
  • [27] Double Roman domination
    Beeler, Robert A.
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 211 : 23 - 29
  • [28] TREES WITH EQUAL ROMAN {2}-DOMINATION NUMBER AND INDEPENDENT ROMAN {2}-DOMINATION NUMBER
    Wu, Pu
    Li, Zepeng
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    [J]. RAIRO-OPERATIONS RESEARCH, 2019, 53 (02) : 389 - 400
  • [29] Complexity of Roman {2}-domination and the double Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1081 - 1086
  • [30] Trees with total Roman domination number equal to Roman domination number plus its domination number: complexity and structural properties
    Abdollahzadeh Ahangar, H.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) : 74 - 78