A Novel Three-parameter Weibull Distribution Parameter Estimation Using Chaos Simulated Annealing Particle Swarm Optimization in Civil Aircraft Risk Assessment

被引:4
|
作者
Zhou, Di [1 ,2 ]
Zhuang, Xiao [2 ,3 ]
Zuo, Hongfu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Civil Aviat Key Lab Aircraft Hlth Monitoring & In, Nanjing 210016, Peoples R China
[2] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[3] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
关键词
Chaos; Simulated annealing; Particle swarm optimization; Three-parameter Weibull distribution; Parameter estimation; NETWORKS;
D O I
10.1007/s13369-021-05467-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to improve the parameter estimation accuracy of three-parameter Weibull distribution, a novel parameter estimation method using chaos simulated annealing particle swarm optimization (CSAPSO) algorithm is proposed. The simulated annealing (SA) algorithm is used to update the inertia weight of particle swarm optimization (PSO) algorithm according to the Metropolis acceptance criteria. The Chebyshev mapping is introduced into PSO according to the properties of chaos to make adaptively chaos mutate for premature particle. Moreover, in order to reduce the search range of PSO and improve the speed of parameter estimation, the initial estimation obtained by graphical parameter estimation method is taken as the initial solution of PSO. The proposed CSAPSO algorithm is compared with genetic algorithm (GA), PSO and SAPSO. These four algorithms are used to estimate the parameters of three sets of sample data which are conform to the Weibull distribution. The mean absolute percentage error (MAPE), correlation coefficient rho, Anderson Darling (AD) test value and the number of convergence step are used as evaluation indexes. The experimental results show that compared with the other three algorithms, the proposed CSAPSO algorithm has best parameter estimation accuracy for different number of samples and different setting parameters of three-parameter Weibull distribution.
引用
收藏
页码:8311 / 8328
页数:18
相关论文
共 50 条
  • [21] Method of united estimation to the parameters of three-parameter Weibull distribution based on PSO
    Luo, Hang
    Wang, Houjun
    Huang, Jianguo
    Long, Bing
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2009, 30 (08): : 1604 - 1612
  • [22] Estimating parameters of the three-parameter Weibull distribution using a neural network
    Abbasi, Babak
    Rabelo, Luis
    Hosseinkouchack, Mehdi
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2008, 2 (04) : 428 - 445
  • [23] An Efficient Method of Parameter and Quantile Estimation for the Three-Parameter Weibull Distribution Based on Statistics Invariant to Unknown Location Parameter
    Nagatsuka, Hideki
    Balakrishnan, N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 295 - 318
  • [24] An Iterative Method for Parameter Estimation of the Three-Parameter Weibull Distribution Based on a Small Sample Size with a Fixed Shape Parameter
    Yang, Xiaoyu
    Xie, Liyang
    Zhao, Bingfeng
    Kong, Xiangwei
    Wu, Ningxiang
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2022, 22 (12)
  • [25] Bare Bones Particle Swarm Applied to Parameter Estimation of Mixed Weibull Distribution
    Krohling, Renato A.
    Campos, Mauro
    Borges, Patrick
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS - ALGORITHMS, INTEGRATION, AND SUCCESS STORIES, 2010, 75 : 53 - +
  • [26] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [27] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [28] Three-Parameter Elliptical Aperture Distributions for Difference Patterns by Particle Swarm Optimization
    Densmore, A.
    Rahmat-Samii, Y.
    2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 47 - 48
  • [29] Kernel density estimation of three-parameter Weibull distribution with neural network and genetic algorithm
    Yang, Fan
    Yue, Zhufeng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 803 - 814
  • [30] Inference on the high-reliability lifetime estimation based on the three-parameter Weibull distribution
    Yang, Xiaoyu
    Xie, Liyang
    Wang, Bowen
    Chen, Jianpeng
    Zhao, Bingfeng
    PROBABILISTIC ENGINEERING MECHANICS, 2024, 77