A Novel Three-parameter Weibull Distribution Parameter Estimation Using Chaos Simulated Annealing Particle Swarm Optimization in Civil Aircraft Risk Assessment

被引:4
|
作者
Zhou, Di [1 ,2 ]
Zhuang, Xiao [2 ,3 ]
Zuo, Hongfu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Civil Aviat Key Lab Aircraft Hlth Monitoring & In, Nanjing 210016, Peoples R China
[2] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[3] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
关键词
Chaos; Simulated annealing; Particle swarm optimization; Three-parameter Weibull distribution; Parameter estimation; NETWORKS;
D O I
10.1007/s13369-021-05467-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to improve the parameter estimation accuracy of three-parameter Weibull distribution, a novel parameter estimation method using chaos simulated annealing particle swarm optimization (CSAPSO) algorithm is proposed. The simulated annealing (SA) algorithm is used to update the inertia weight of particle swarm optimization (PSO) algorithm according to the Metropolis acceptance criteria. The Chebyshev mapping is introduced into PSO according to the properties of chaos to make adaptively chaos mutate for premature particle. Moreover, in order to reduce the search range of PSO and improve the speed of parameter estimation, the initial estimation obtained by graphical parameter estimation method is taken as the initial solution of PSO. The proposed CSAPSO algorithm is compared with genetic algorithm (GA), PSO and SAPSO. These four algorithms are used to estimate the parameters of three sets of sample data which are conform to the Weibull distribution. The mean absolute percentage error (MAPE), correlation coefficient rho, Anderson Darling (AD) test value and the number of convergence step are used as evaluation indexes. The experimental results show that compared with the other three algorithms, the proposed CSAPSO algorithm has best parameter estimation accuracy for different number of samples and different setting parameters of three-parameter Weibull distribution.
引用
收藏
页码:8311 / 8328
页数:18
相关论文
共 50 条
  • [41] Estimation of three-parameter exponentiated-Weibull distribution under type-II censoring
    Singh, U
    Gupta, PK
    Upadhyay, SK
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 134 (02) : 350 - 372
  • [42] Estimation of dielectric breakdown voltage when breakdown voltage follows the three-parameter weibull distribution
    Hirose, Hideo
    1600, (110):
  • [43] Reliability Estimation of Three Parameters Weibull Distribution based on Particle Swarm Optimization
    Basheer, Ghalia Twfeek
    Algamal, Zakariya Yahya
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2021, 17 (01) : 35 - 42
  • [44] Parameter Estimation in Naphtha Pyrolysis Based on Chaos Quantum Particle Swarm Optimization Algorithm
    Wang, Honggang
    Feng, Jingxin
    Qian, Feng
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5600 - 5604
  • [45] Parameter estimation of three-parameter Weibull distribution by hybrid gray genetic algorithm with modified maximum likelihood method with small samples
    Gu, Jianyi
    Kong, Xiangwei
    Guo, Jin
    Qi, Haochen
    Wang, Zinan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, : 5363 - 5379
  • [46] Multiuser Detection Using the Novel Particle Swarm Optimization with Simulated Annealing
    Gao, Hongyuan
    Diao, Ming
    2009 5TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-8, 2009, : 512 - 516
  • [47] Application of Simulated Annealing Particle Swarm Optimization Based on Correlation in Parameter Identification of Induction Motor
    Wang, Lei
    Liu, Yongqiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [48] USING PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION IN HYDROLOGICAL MODELLING
    Jakubcova, Michala
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 399 - 406
  • [49] Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization
    Ojeda, Daniel R. G.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2018, 81 : 1 - 10
  • [50] Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization
    Kumar, V.
    Balasubramanian, P.
    FUEL, 2009, 88 (11) : 2171 - 2180