A Novel Three-parameter Weibull Distribution Parameter Estimation Using Chaos Simulated Annealing Particle Swarm Optimization in Civil Aircraft Risk Assessment

被引:4
|
作者
Zhou, Di [1 ,2 ]
Zhuang, Xiao [2 ,3 ]
Zuo, Hongfu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Civil Aviat Key Lab Aircraft Hlth Monitoring & In, Nanjing 210016, Peoples R China
[2] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[3] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
关键词
Chaos; Simulated annealing; Particle swarm optimization; Three-parameter Weibull distribution; Parameter estimation; NETWORKS;
D O I
10.1007/s13369-021-05467-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to improve the parameter estimation accuracy of three-parameter Weibull distribution, a novel parameter estimation method using chaos simulated annealing particle swarm optimization (CSAPSO) algorithm is proposed. The simulated annealing (SA) algorithm is used to update the inertia weight of particle swarm optimization (PSO) algorithm according to the Metropolis acceptance criteria. The Chebyshev mapping is introduced into PSO according to the properties of chaos to make adaptively chaos mutate for premature particle. Moreover, in order to reduce the search range of PSO and improve the speed of parameter estimation, the initial estimation obtained by graphical parameter estimation method is taken as the initial solution of PSO. The proposed CSAPSO algorithm is compared with genetic algorithm (GA), PSO and SAPSO. These four algorithms are used to estimate the parameters of three sets of sample data which are conform to the Weibull distribution. The mean absolute percentage error (MAPE), correlation coefficient rho, Anderson Darling (AD) test value and the number of convergence step are used as evaluation indexes. The experimental results show that compared with the other three algorithms, the proposed CSAPSO algorithm has best parameter estimation accuracy for different number of samples and different setting parameters of three-parameter Weibull distribution.
引用
收藏
页码:8311 / 8328
页数:18
相关论文
共 50 条
  • [31] A percolation model of unsaturated hydraulic conductivity using three-parameter Weibull distribution
    Sourmanabad, Marzieh Zare
    Norouzi, Sarem
    Mirzaei, Farhad
    Yokeley, Brandon A.
    Ebrahimian, Hamed
    Ghanbarian, Behzad
    ADVANCES IN WATER RESOURCES, 2024, 188
  • [32] Evaluation of estimation methods for fitting the three-parameter Weibull distribution to European beech forests
    Boncina, Ziva
    Trifkovic, Vasilije
    Rosset, Christian
    Klopcic, Matija
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2022, 15 : 484 - 490
  • [34] THREE-PARAMETER ELLIPTICAL APERTURE DISTRIBUTIONS FOR SUM AND DIFFERENCE ANTENNA PATTERNS USING PARTICLE SWARM OPTIMIZATION
    Densmore, Arthur
    Rahmat-Samii, Yahya
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 143 : 709 - 743
  • [35] Optimal Parameter Estimation of Solar Cell using Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO)
    Kiani, Arooj Tariq
    Nadeem, Muhammad Faisal
    Ahmed, Ali
    Sajjad, Intisar Ali
    Hans, Muhammad Sohaib
    Martirano, Luigi
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [36] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [37] Adaptive Simulated Annealing Particle Swarm Optimization for Catalyst Protected Region Parameter Identification
    Liu Shu-ting
    Gao Xian-wen
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 1580 - 1585
  • [38] Particle Swarm Optimization Applied to Parameter Estimation of the Four-Parameter Burr III Distribution
    Ozsoy, Volkan Soner
    Orkcu, H. Hasan
    Bal, Hasan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 895 - 909
  • [39] Particle Swarm Optimization Applied to Parameter Estimation of the Four-Parameter Burr III Distribution
    Volkan Soner Özsoy
    H. Hasan Örkcü
    Hasan Bal
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 895 - 909
  • [40] Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution
    Luceno, Alberto
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2008, 78 (10) : 941 - 949