Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution

被引:6
|
作者
Luceno, Alberto [1 ]
机构
[1] Univ Cantabria, ETS Ingn Caminos, E-39005 Santander, Spain
关键词
Anderson-Darling; Cramer-von Mises; empirical distribution function; Kolmogorov distance; minimum distance estimators;
D O I
10.1080/00949650701467363
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of statistics based on the empirical distribution function is analysed for estimation of the scale, shape, and location parameters of the three-parameter Weibull distribution. The resulting maximum goodness of fit (MGF) estimators are compared with their maximum likelihood counterparts. In addition to the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics, some related empirical distribution function statistics using different weight functions are considered. The results show that the MGF estimators of the scale and shape parameters are usually more efficient than the maximum likelihood estimators when the shape parameter is smaller than 2, particularly if the sample size is large.
引用
收藏
页码:941 / 949
页数:9
相关论文
共 50 条
  • [1] Maximum Likelihood Estimation for Three-Parameter Weibull Distribution Using Evolutionary Strategy
    Yang, Fan
    Ren, Hu
    Hu, Zhili
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [2] Finding maximum likelihood estimators for the three-parameter weibull distribution
    Gourdin, Eric
    Hansen, Pierre
    Jaumard, Brigitte
    Journal of Global Optimization, 1994, 5 (04)
  • [3] Concerns About Maximum Likelihood Estimation for the Three-Parameter Weibull Distribution: Case Study of Statistical Software
    Harper, William V.
    Eschenbach, Ted G.
    James, Thomas R.
    AMERICAN STATISTICIAN, 2011, 65 (01): : 44 - 54
  • [4] Maximum likelihood parameter estimation in the three-parameter gamma distribution with the use of Mathematica
    Tzavelas, George
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (12) : 1457 - 1466
  • [5] Advanced Algorithm for Maximum Likelihood Estimation of Three Parameter Weibull Distribution
    Yang Li
    Wang Dong
    Gao Yanli
    Liu Lingshun
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 1, 2011, : 321 - 324
  • [6] Notes on maximum likelihood estimation for the three-parameter Burr XII distribution
    Shao, QX
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (03) : 675 - 687
  • [7] On maximum likelihood estimation for the two parameter Weibull distribution
    Watkins, AJ
    MICROELECTRONICS AND RELIABILITY, 1996, 36 (05): : 595 - 603
  • [8] Existence of Maximum Likelihood Estimation for Three-parameter Log-normal Distribution
    Tang, Yincai
    Wei, Xiaoling
    PROCEEDINGS OF 2009 8TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY AND SAFETY, VOLS I AND II: HIGHLY RELIABLE, EASY TO MAINTAIN AND READY TO SUPPORT, 2009, : 305 - 307
  • [9] Maximum likelihood estimation for the three-parameter Weibull cdf of strength in presence of concurrent flaw populations
    Przybilla, Constanze
    Fernandez-Canteli, Alfonso
    Castillo, Enrique
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (10) : 1721 - 1727
  • [10] Parameter estimation of three-parameter Weibull distribution by hybrid gray genetic algorithm with modified maximum likelihood method with small samples
    Gu, Jianyi
    Kong, Xiangwei
    Guo, Jin
    Qi, Haochen
    Wang, Zinan
    Journal of Mechanical Science and Technology, 2024, 38 (10) : 5363 - 5379