Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution

被引:6
|
作者
Luceno, Alberto [1 ]
机构
[1] Univ Cantabria, ETS Ingn Caminos, E-39005 Santander, Spain
关键词
Anderson-Darling; Cramer-von Mises; empirical distribution function; Kolmogorov distance; minimum distance estimators;
D O I
10.1080/00949650701467363
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of statistics based on the empirical distribution function is analysed for estimation of the scale, shape, and location parameters of the three-parameter Weibull distribution. The resulting maximum goodness of fit (MGF) estimators are compared with their maximum likelihood counterparts. In addition to the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics, some related empirical distribution function statistics using different weight functions are considered. The results show that the MGF estimators of the scale and shape parameters are usually more efficient than the maximum likelihood estimators when the shape parameter is smaller than 2, particularly if the sample size is large.
引用
收藏
页码:941 / 949
页数:9
相关论文
共 50 条