Effect Analysis of Probability Estimators on Parameter Estimation of the Three-Parameter Weibull Distribution

被引:1
|
作者
Yang, Xiaoyu
Xie, Liyang [1 ,2 ]
Song, Jiaxin
Chen, Jianpeng
Zhao, Bingfeng
Yang, Yifeng
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Peoples R China
[2] Northeastern Univ, Minist Educ, Key Lab Vibrat & Control Aeroprop Syst, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-parameter Weibull distribution; probability estimator; linear regression estimation; minimum discrepancy estimation; errors-in-variables estimation; least squares estimation; FATIGUE LIFE ASSESSMENT; MODULUS; SQUARES; MODELS;
D O I
10.1142/S0219455424500093
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The three-parameter Weibull distribution is one of the most widely used probabilistic models for the characterization of fatigue failure data. The linear regression estimation (LRE), the minimum discrepancy estimation (MDE), errors-in-variables estimation (EIV) as well as the least squares estimation (LSE) are generally applied in the estimation of Weibull parameters for their simplicity, in which probability estimators play an important role. In this paper, compared with five commonly used estimators, an optimal probability estimator with the four methods for different sample sizes is obtained by Monte Carlo simulations. The optimal probability estimator shows more robustness and higher accuracy. In conclusion, an optimal probability estimator of the midpoint rank is recommended for LRE, MDE and EIV especially with small samples in practical applications.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Parameter estimation for a three-parameter Weibull distribution - a comparative study
    Bensic, Mirta
    Jankov, Dragana
    [J]. KOI 2008: 12TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 2008, : 159 - 164
  • [2] Parameter estimation of three-parameter Weibull probability model based on outlier detection
    Zhang, Hang
    Gao, Zhefeng
    Du, Chenran
    Bi, Shansong
    Fang, Yanyan
    Yun, Fengling
    Fang, Sheng
    Yu, Zhanglong
    Cui, Yi
    Shen, Xueling
    [J]. RSC ADVANCES, 2022, 12 (53) : 34154 - 34164
  • [3] A consistent method of estimation for the three-parameter Weibull distribution
    Nagatsuka, Hideki
    Kamakura, Toshinari
    Balakrishnan, N.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 210 - 226
  • [4] Estimation of the reliability parameter for three-parameter Weibull models
    Montoya, Jose A.
    Diaz-Frances, Eloisa
    Figueroa P, Gudelia
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 67 : 621 - 633
  • [5] An improved parameter estimation method for three-parameter Weibull distribution in the life analysis of rolling bearing
    Yin, Fenglong
    Wang, Yashun
    Zhang, Chunhua
    Zhang, Xiangpo
    [J]. ADVANCED MATERIALS DESIGN AND MECHANICS, 2012, 569 : 442 - 446
  • [6] Parameter Estimation in a Three-Parameter Lognormal Distribution
    Kozlov V.D.
    Maysuradze A.I.
    [J]. Computational Mathematics and Modeling, 2019, 30 (3) : 302 - 310
  • [7] Parameter estimation of the Weibull probability distribution
    Pang, WK
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 549 - 554
  • [8] Monitoring reliability for a three-parameter Weibull distribution
    Sueruecue, Baris
    Sazak, Hakan S.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (02) : 503 - 508
  • [9] Three-Parameter Estimation of the Weibull Distribution Based on Least Squares Iteration
    Yang, Xiaoyu
    Song, Jiaxin
    Xie, Liyang
    Zhao, Bingfeng
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 20 - 26
  • [10] Probabilistic analysis of glass elements with three-parameter Weibull distribution
    Ramos, Alberto
    Muniz-Calvente, Miguel
    Fernandez, Pelayo
    Fernandez Canteli, Alfonso
    Jesus Lamela, Maria
    [J]. BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2015, 54 (04): : 153 - 158