An Iterative Method for Parameter Estimation of the Three-Parameter Weibull Distribution Based on a Small Sample Size with a Fixed Shape Parameter

被引:9
|
作者
Yang, Xiaoyu
Xie, Liyang [1 ]
Zhao, Bingfeng
Kong, Xiangwei
Wu, Ningxiang
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Peoples R China
基金
中国博士后科学基金;
关键词
Three-parameter Weibull distribution; iterative method; location parameter; scale parameter; Monte Carlo simulation; RELIABILITY;
D O I
10.1142/S0219455422501255
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The three-parameter Weibull distribution is popular in reliability analysis. However, in the context of a small sample size, the issue of parameter estimation of the three-parameter Weibull distribution is difficult to address. If only a small sample size is available, a reasonable method is to empirically determine the shape parameter, and the emphasis is placed on location parameter estimation. This paper presents a theoretical model to establish the relationship between the location parameter, the minimal sample value, and the sample size. Moreover, an iterative method is proposed to estimate the Weibull location parameter and scale parameter with an empirical value for the shape parameter. Compared with the maximum likelihood method (MLE), the Weibull plot with the sample correlation coefficient and TL-moment, the proposed method can more effectively estimate the parameters of the three-parameter Weibull distribution.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A consistent method of estimation for the three-parameter Weibull distribution
    Nagatsuka, Hideki
    Kamakura, Toshinari
    Balakrishnan, N.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 210 - 226
  • [2] Parameter estimation for a three-parameter Weibull distribution - a comparative study
    Bensic, Mirta
    Jankov, Dragana
    [J]. KOI 2008: 12TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 2008, : 159 - 164
  • [3] An Efficient Method of Parameter and Quantile Estimation for the Three-Parameter Weibull Distribution Based on Statistics Invariant to Unknown Location Parameter
    Nagatsuka, Hideki
    Balakrishnan, N.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 295 - 318
  • [4] Estimation of the reliability parameter for three-parameter Weibull models
    Montoya, Jose A.
    Diaz-Frances, Eloisa
    Figueroa P, Gudelia
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 67 : 621 - 633
  • [5] An improved parameter estimation method for three-parameter Weibull distribution in the life analysis of rolling bearing
    Yin, Fenglong
    Wang, Yashun
    Zhang, Chunhua
    Zhang, Xiangpo
    [J]. ADVANCED MATERIALS DESIGN AND MECHANICS, 2012, 569 : 442 - 446
  • [6] Effect Analysis of Probability Estimators on Parameter Estimation of the Three-Parameter Weibull Distribution
    Yang, Xiaoyu
    Xie, Liyang
    Song, Jiaxin
    Chen, Jianpeng
    Zhao, Bingfeng
    Yang, Yifeng
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (01)
  • [7] Parameter Estimation in a Three-Parameter Lognormal Distribution
    Kozlov V.D.
    Maysuradze A.I.
    [J]. Computational Mathematics and Modeling, 2019, 30 (3) : 302 - 310
  • [8] Parameter estimation of three-parameter Weibull probability model based on outlier detection
    Zhang, Hang
    Gao, Zhefeng
    Du, Chenran
    Bi, Shansong
    Fang, Yanyan
    Yun, Fengling
    Fang, Sheng
    Yu, Zhanglong
    Cui, Yi
    Shen, Xueling
    [J]. RSC ADVANCES, 2022, 12 (53) : 34154 - 34164
  • [9] Three-Parameter Estimation of the Weibull Distribution Based on Least Squares Iteration
    Yang, Xiaoyu
    Song, Jiaxin
    Xie, Liyang
    Zhao, Bingfeng
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 20 - 26
  • [10] Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples
    Ng, H. K. T.
    Luo, L.
    Hu, Y.
    Duan, F.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1661 - 1678