QUASI-LOWER DIMENSION AND QUASI-LIPSCHITZ MAPPING

被引:13
|
作者
Chen, Haipeng [1 ]
Du, Yali [2 ]
Wei, Chun [3 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Sao Paulo, Inst Math & Stat, BR-05508090 Sao Paulo, SP, Brazil
[3] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Peoples R China
关键词
Quasi-Lower Dimension; Quasi-Lipschitz Mapping; Sets Defined by Digit Restrictions; CANTOR SETS; MORAN SETS; EQUIVALENCE; FRACTALS;
D O I
10.1142/S0218348X17500347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the lower dimension is not invariant under quasi-Lipschitz mapping, and then we find an invariant named the quasi-lower dimension. We also compute the quasi-lower dimension of a class of sets defined by digit restrictions, and then give an example to distinguish the quasi-lower dimension and other dimensions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quasi-Lipschitz mapping, correlation and local dimensions
    Yang, Jiaojiao
    Wu, Min
    Zhang, Yiwei
    CHAOS SOLITONS & FRACTALS, 2017, 105 : 224 - 229
  • [2] Quasi-Lipschitz equivalence of fractals
    Li-Feng Xi
    Israel Journal of Mathematics, 2007, 160 : 1 - 21
  • [3] Quasi-Lipschitz equivalence of fractals
    Xi, Li-Feng
    ISRAEL JOURNAL OF MATHEMATICS, 2007, 160 (01) : 1 - 21
  • [4] Quasi-Lipschitz conditions in Euler flows
    Rautmann, R
    Trends in Partial Differential Equations of Mathematical Physics, 2005, 61 : 243 - 256
  • [5] EXTENSION OF QUASI-LIPSCHITZ SET FUNCTIONS
    GUSELNIKOV, NS
    MATHEMATICAL NOTES, 1975, 17 (1-2) : 14 - 19
  • [6] Quasi-Lipschitz condition in potential theory
    Rautmann, R
    Solonnikov, V
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) : 485 - 505
  • [7] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin XI LiFeng School of Computer Science and Information Technology Zhejiang Wanli University Ningbo ChinaInstitute of Mathematics Zhejiang Wanli University Ningbo China
    Science China(Mathematics), 2011, 54 (12) : 2573 - 2582
  • [8] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Qin Wang
    LiFeng Xi
    Science China Mathematics, 2011, 54 : 2573 - 2582
  • [9] QUASI-LIPSCHITZ CONDITIONS FOR GRADIENTS OF NEWTON POTENTIALS
    RAUTMANN, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (04): : T101 - &
  • [10] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin1 & XI LiFeng2
    2Institute of Mathematics
    Science China Mathematics, 2011, (12) : 2573 - 2582