Quasi-Lipschitz conditions in Euler flows

被引:0
|
作者
Rautmann, R [1 ]
机构
[1] Univ Gesamthsch Paderborn, Inst Math, D-33095 Paderborn, Germany
关键词
Helmholtz's and Cauchy's vorticity equations with a discretization; in Holder spaces; Quasi-Lipschitz conditions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In mathematical models of incompressible flow problems, quasi-Lipschitz conditions present a useful link between a class of singular integrals and systems of ordinary differential equations. Such a condition, established in suitable form for the first-order derivatives of Newtonian potentials in R-n (Section 2) gives the main tool for the proof (in Sections 3-6) of the existence of a unique classical solution to Cauchy's problem of Helmholtz's vorticity transport equation with partial discretization in R-3 for each bounded time interval. The solution depends continuously on its initial value and, in addition, fulfills a discretized form of Cauchy's vorticity equation.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
  • [1] QUASI-LIPSCHITZ CONDITIONS FOR GRADIENTS OF NEWTON POTENTIALS
    RAUTMANN, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (04): : T101 - &
  • [2] Quasi-Lipschitz equivalence of fractals
    Li-Feng Xi
    Israel Journal of Mathematics, 2007, 160 : 1 - 21
  • [3] Quasi-Lipschitz equivalence of fractals
    Xi, Li-Feng
    ISRAEL JOURNAL OF MATHEMATICS, 2007, 160 (01) : 1 - 21
  • [4] EXTENSION OF QUASI-LIPSCHITZ SET FUNCTIONS
    GUSELNIKOV, NS
    MATHEMATICAL NOTES, 1975, 17 (1-2) : 14 - 19
  • [5] Quasi-Lipschitz condition in potential theory
    Rautmann, R
    Solonnikov, V
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) : 485 - 505
  • [6] Quasi-Lipschitz mapping, correlation and local dimensions
    Yang, Jiaojiao
    Wu, Min
    Zhang, Yiwei
    CHAOS SOLITONS & FRACTALS, 2017, 105 : 224 - 229
  • [7] QUASI-LOWER DIMENSION AND QUASI-LIPSCHITZ MAPPING
    Chen, Haipeng
    Du, Yali
    Wei, Chun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (03)
  • [8] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin XI LiFeng School of Computer Science and Information Technology Zhejiang Wanli University Ningbo ChinaInstitute of Mathematics Zhejiang Wanli University Ningbo China
    Science China(Mathematics), 2011, 54 (12) : 2573 - 2582
  • [9] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Qin Wang
    LiFeng Xi
    Science China Mathematics, 2011, 54 : 2573 - 2582
  • [10] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin1 & XI LiFeng2
    2Institute of Mathematics
    Science China Mathematics, 2011, (12) : 2573 - 2582