Quasi-Lipschitz equivalence of fractals

被引:42
|
作者
Xi, Li-Feng [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s11856-007-0053-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper proves that if E and F are dust-like C-1 self-conformal sets with 0 < H-H(dim)E (E), H-H(dim)F (F) < infinity, then there exists a bijection f: E -> F such that (dim(H)F) log vertical bar f(x) - f(y)vertical bar/(dim(H)E) log vertical bar x -y vertical bar -> 1 uniformly as vertical bar x-y vertical bar -> 0. It is also proved that a self-similar arc is Hoder equivalent to [0, 1] if and only if it is a quasi-arc.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Quasi-Lipschitz equivalence of fractals
    Li-Feng Xi
    Israel Journal of Mathematics, 2007, 160 : 1 - 21
  • [2] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin XI LiFeng School of Computer Science and Information Technology Zhejiang Wanli University Ningbo ChinaInstitute of Mathematics Zhejiang Wanli University Ningbo China
    Science China(Mathematics), 2011, 54 (12) : 2573 - 2582
  • [3] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Qin Wang
    LiFeng Xi
    Science China Mathematics, 2011, 54 : 2573 - 2582
  • [4] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin1 & XI LiFeng2
    2Institute of Mathematics
    Science China Mathematics, 2011, (12) : 2573 - 2582
  • [5] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Wang Qin
    Xi LiFeng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) : 2573 - 2582
  • [6] Quasi-Lipschitz equivalence of Ahlfors-David regular sets
    Wang, Qin
    Xi, Lifeng
    NONLINEARITY, 2011, 24 (03) : 941 - 950
  • [7] QUASI-LIPSCHITZ EQUIVALENCE OF SUBSETS OF AHLFORS-DAVID REGULAR SETS
    Guo, Qiuli
    Li, Hao
    Wang, Qin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 759 - 769
  • [8] Quasi-Lipschitz conditions in Euler flows
    Rautmann, R
    Trends in Partial Differential Equations of Mathematical Physics, 2005, 61 : 243 - 256
  • [9] EXTENSION OF QUASI-LIPSCHITZ SET FUNCTIONS
    GUSELNIKOV, NS
    MATHEMATICAL NOTES, 1975, 17 (1-2) : 14 - 19
  • [10] Quasi-Lipschitz condition in potential theory
    Rautmann, R
    Solonnikov, V
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) : 485 - 505