Quasi-Lipschitz equivalence of fractals

被引:42
|
作者
Xi, Li-Feng [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s11856-007-0053-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper proves that if E and F are dust-like C-1 self-conformal sets with 0 < H-H(dim)E (E), H-H(dim)F (F) < infinity, then there exists a bijection f: E -> F such that (dim(H)F) log vertical bar f(x) - f(y)vertical bar/(dim(H)E) log vertical bar x -y vertical bar -> 1 uniformly as vertical bar x-y vertical bar -> 0. It is also proved that a self-similar arc is Hoder equivalent to [0, 1] if and only if it is a quasi-arc.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND IRREDUCIBILITY OF POLYNOMIALS
    Luo, Jun Jason
    Ruan, Huo-Jun
    Wang, Yi-Lin
    MATHEMATIKA, 2018, 64 (03) : 730 - 741
  • [42] Lipschitz equivalence of a class of general Sierpinski carpets
    Wen, Zhixiong
    Zhu, Zhiyong
    Deng, Guotai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 16 - 23
  • [43] Ambient Lipschitz Equivalence of Real Surface Singularities
    Birbrair, Lev
    Gabrielov, Andrei
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (20) : 6347 - 6361
  • [44] Invariants for bi-Lipschitz equivalence of ideals
    Bivia-Ausina, Carles
    Fukui, Toshizumi
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03): : 791 - 815
  • [45] Lipschitz equivalence of self-similar sets
    Rao, H
    Ruan, HJ
    Xi, LF
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 191 - 196
  • [46] Blow-analytic equivalence versus contact bi-Lipschitz equivalence
    Birbrair, Lev
    Fernandes, Alexandre
    Grandjean, Vincent
    Gaffney, Terence
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (03) : 989 - 1006
  • [47] HARMONIC FUNCTIONS REPRESENTATION OF BESOV-LIPSCHITZ FUNCTIONS ON NESTED FRACTALS
    Bodin, Mats
    Pietrusica-Paluba, Katarzyna
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) : 509 - 523
  • [48] LIPSCHITZ-KILLING CURVATURES OF SELF-SIMILAR RANDOM FRACTALS
    Zaehle, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (05) : 2663 - 2684
  • [49] QUASI-EQUIVALENCE AND QUASI-SIMILARITY
    MOORE, B
    NORDGREN, EA
    ACTA SCIENTIARUM MATHEMATICARUM, 1973, 34 (01): : 311 - 316
  • [50] LIPSCHITZ EQUIVALENCE OF A CLASS OF SELF-SIMILAR SETS
    Chen, Xiu
    Jiang, Kan
    Li, Wenxia
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 585 - 591