Quasi-Lipschitz equivalence of fractals

被引:42
|
作者
Xi, Li-Feng [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s11856-007-0053-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper proves that if E and F are dust-like C-1 self-conformal sets with 0 < H-H(dim)E (E), H-H(dim)F (F) < infinity, then there exists a bijection f: E -> F such that (dim(H)F) log vertical bar f(x) - f(y)vertical bar/(dim(H)E) log vertical bar x -y vertical bar -> 1 uniformly as vertical bar x-y vertical bar -> 0. It is also proved that a self-similar arc is Hoder equivalent to [0, 1] if and only if it is a quasi-arc.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] Hybrid iterative algorithm for finite families of countable Bregman quasi-Lipschitz mappings with applications in Banach spaces
    Minjiang Chen
    Jianzhi Bi
    Yongfu Su
    Journal of Inequalities and Applications, 2015
  • [22] Cloud hybrid methods for solving split equilibrium and fixed point problems for a family of countable quasi-Lipschitz mappings and applications
    Xu, Yongchun
    Tang, Yanxia
    Guan, Jinyu
    Su, Yongfu
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 752 - 770
  • [23] EQUIVALENCE OF LIPSCHITZ STRUCTURES
    FRASER, RB
    CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (03): : 363 - &
  • [24] Discrete characterisations of Lipschitz spaces on fractals
    Bodin, Mats
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (01) : 26 - 43
  • [25] Lipschitz equivalence of fractal sets in ℝ
    GuoTai Deng
    XingGang He
    Science China Mathematics, 2012, 55 : 2095 - 2107
  • [26] ON THE LIPSCHITZ EQUIVALENCE OF CANTOR SETS
    FALCONER, KJ
    MARSH, DT
    MATHEMATIKA, 1992, 39 (78) : 223 - 233
  • [27] Lipschitz equivalence of fractal triangles
    Zhu, Zhi-Yong
    Dong, En-Mei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 1157 - 1176
  • [28] LIPSCHITZ EQUIVALENCE OF MCMULLEN SETS
    Li, Boming
    Li, Wenxia
    Miao, Jun Jie
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2013, 21 (3-4)
  • [29] Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group
    Balogh, Zoltan M.
    Hoefer-Isenegger, Regula
    Tyson, Jeremy T.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 : 621 - 651
  • [30] Dimensions of Fractals Generated by Bi-Lipschitz Maps
    Deng, Rong
    Ngai, Sze-Man
    ABSTRACT AND APPLIED ANALYSIS, 2014,