Lipschitz equivalence of fractal triangles

被引:0
|
作者
Zhu, Zhi-Yong [1 ]
Dong, En-Mei [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shannxi, Peoples R China
关键词
Fractal; Lipschitz equivalence; Symbolic cantor set; Graph-directed sets; Fractal triangle; Totally disconnected; SELF-SIMILAR SETS; CANTOR SETS; HAUSDORFF DIMENSION;
D O I
10.1016/j.jmaa.2015.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an integer number n >= 2 and two digit sets A subset of {k(1)alpha + k(1)beta : k(1) + k(2) <= n - 1 and k(1), k(2) is an element of N boolean OR {0}}, B subset of {k(1)alpha + k(2)beta : 2 <= k(1) +k(2) <= n and k(1), k(2) is an element of N}, where alpha = (1,0), beta = (1/2, root 3/2), there is a self-similar set T = T(A, B) subset of R-2 satisfying the set equation: T = [T + A) boolean OR (B - T)]/n. We call such T a fractal triangle. By examining deeper the 'types' of connected components in each step of constructing such fractal triangles, we in this paper successfully characterize the Lipschitz equivalence of two classes of totally disconnected fractal triangles in it through the number of basic triangles in the first step of construction. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1157 / 1176
页数:20
相关论文
共 50 条
  • [1] Lipschitz equivalence of fractal sets in ℝ
    GuoTai Deng
    XingGang He
    Science China Mathematics, 2012, 55 : 2095 - 2107
  • [2] Lipschitz equivalence of fractal sets in R
    DENG GuoTai & HE XingGang College of Mathematics and Statistics
    ScienceChina(Mathematics), 2012, 55 (10) : 2094 - 2106
  • [3] Lipschitz equivalence of fractal sets in a"e
    Deng GuoTai
    He XingGang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (10) : 2095 - 2107
  • [4] LIPSCHITZ EQUIVALENCE OF TOTALLY DISCONNECTED GENERAL SIERPINSKI TRIANGLES
    Zhu, Zhi-Yong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (02)
  • [5] Topological invariants and Lipschitz equivalence of fractal squares
    Ruan, Huo-Jun
    Wang, Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (01) : 327 - 344
  • [6] Gap sequence, Lipschitz equivalence and box dimension of fractal sets
    Rao, Hui
    Ruan, Huo-Jun
    Yang, Ya-Min
    NONLINEARITY, 2008, 21 (06) : 1339 - 1347
  • [7] EQUIVALENCE OF TRIANGLES
    GOLDBERG, M
    COHEN, JM
    DOU, J
    EFFROSS, W
    KUIPERS, L
    NIJENHUIS, A
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (09): : 789 - 791
  • [8] EQUIVALENCE OF 2 TRIANGLES
    PELLING, MJ
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (01): : 55 - 56
  • [9] EQUIVALENCE OF LIPSCHITZ STRUCTURES
    FRASER, RB
    CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (03): : 363 - &
  • [10] On the equivalence of certain statements in triangles
    Zeinal, Abasov Raghib
    LUZ, 2024, 23 (01):