Lipschitz equivalence of fractal triangles

被引:0
|
作者
Zhu, Zhi-Yong [1 ]
Dong, En-Mei [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shannxi, Peoples R China
关键词
Fractal; Lipschitz equivalence; Symbolic cantor set; Graph-directed sets; Fractal triangle; Totally disconnected; SELF-SIMILAR SETS; CANTOR SETS; HAUSDORFF DIMENSION;
D O I
10.1016/j.jmaa.2015.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an integer number n >= 2 and two digit sets A subset of {k(1)alpha + k(1)beta : k(1) + k(2) <= n - 1 and k(1), k(2) is an element of N boolean OR {0}}, B subset of {k(1)alpha + k(2)beta : 2 <= k(1) +k(2) <= n and k(1), k(2) is an element of N}, where alpha = (1,0), beta = (1/2, root 3/2), there is a self-similar set T = T(A, B) subset of R-2 satisfying the set equation: T = [T + A) boolean OR (B - T)]/n. We call such T a fractal triangle. By examining deeper the 'types' of connected components in each step of constructing such fractal triangles, we in this paper successfully characterize the Lipschitz equivalence of two classes of totally disconnected fractal triangles in it through the number of basic triangles in the first step of construction. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1157 / 1176
页数:20
相关论文
共 50 条
  • [31] Fractal penrose tiles II: Tiles with fractal boundary as duals of penrose triangles
    Götz Gelbrich
    aequationes mathematicae, 1997, 54 (1-2) : 108 - 116
  • [32] Blow-analytic equivalence versus contact bi-Lipschitz equivalence
    Birbrair, Lev
    Fernandes, Alexandre
    Grandjean, Vincent
    Gaffney, Terence
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (03) : 989 - 1006
  • [33] Bandwidth Enhancement using Small Triangles on Sierpinski Fractal
    Singh, Monika
    Kumar, Navneet
    Diwari, Santanu
    Kala, Pradyot
    2013 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSC), 2013, : 86 - 91
  • [34] Fractal dimensions of fractal transformations and quantization dimensions for bi-Lipschitz mappings
    Priyadarshi, Amit
    Verma, Manuj
    Verma, Saurabh
    JOURNAL OF FRACTAL GEOMETRY, 2025, 12 (1-2) : 1 - 33
  • [35] AN EQUIVALENCE RELATION IN SOME FRACTAL SETS
    AURELL, E
    PHYSICS LETTERS A, 1988, 130 (8-9) : 449 - 455
  • [36] LIPSCHITZ EQUIVALENCE OF A CLASS OF SELF-SIMILAR SETS
    Chen, Xiu
    Jiang, Kan
    Li, Wenxia
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 585 - 591
  • [37] Lipschitz equivalence of subsets of self-conformal sets
    Llorente, Marta
    Mattila, Pertti
    NONLINEARITY, 2010, 23 (04) : 875 - 882
  • [38] The generic equivalence among the Lipschitz saturations of a sheaf of modules
    Gaffney, Terence James
    da Silva, Thiago Filipe
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (02)
  • [39] Lipschitz images with fractal boundaries and their small surface wrapping
    Buczolich, Z
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) : 3589 - 3595
  • [40] Finite fractal dimension and Holder-Lipschitz parametrization
    Foias, C
    Olson, E
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1996, 45 (03) : 603 - 616