Lipschitz equivalence of fractal triangles

被引:0
|
作者
Zhu, Zhi-Yong [1 ]
Dong, En-Mei [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shannxi, Peoples R China
关键词
Fractal; Lipschitz equivalence; Symbolic cantor set; Graph-directed sets; Fractal triangle; Totally disconnected; SELF-SIMILAR SETS; CANTOR SETS; HAUSDORFF DIMENSION;
D O I
10.1016/j.jmaa.2015.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an integer number n >= 2 and two digit sets A subset of {k(1)alpha + k(1)beta : k(1) + k(2) <= n - 1 and k(1), k(2) is an element of N boolean OR {0}}, B subset of {k(1)alpha + k(2)beta : 2 <= k(1) +k(2) <= n and k(1), k(2) is an element of N}, where alpha = (1,0), beta = (1/2, root 3/2), there is a self-similar set T = T(A, B) subset of R-2 satisfying the set equation: T = [T + A) boolean OR (B - T)]/n. We call such T a fractal triangle. By examining deeper the 'types' of connected components in each step of constructing such fractal triangles, we in this paper successfully characterize the Lipschitz equivalence of two classes of totally disconnected fractal triangles in it through the number of basic triangles in the first step of construction. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1157 / 1176
页数:20
相关论文
共 50 条
  • [41] Lipschitz equivalence of self-similar sets with touching structures
    Ruan, Huo-Jun
    Wang, Yang
    Xi, Li-Feng
    NONLINEARITY, 2014, 27 (06) : 1299 - 1321
  • [42] LIPSCHITZ EQUIVALENCE OF SELF-SIMILAR SETS WITH EXACT OVERLAPS
    Jiang, Kan
    Wang, Songjing
    Xi, Lifeng
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 905 - 912
  • [43] Lipschitz equivalence of self-similar sets with triangular pattern
    Zhu ZhiYong
    Xiong Ying
    Xi LiFeng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (05) : 1019 - 1026
  • [44] Multi-K-bi-Lipschitz equivalence in dimension two
    Birbrair, Lev
    Mendes, Rodrigo
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1165 - 1177
  • [45] Lipschitz equivalence of self-similar sets and hyperbolic boundaries
    Luo, Jun Jason
    Lau, Ka-Sing
    ADVANCES IN MATHEMATICS, 2013, 235 : 555 - 579
  • [46] ISOMORPHISM AND BI-LIPSCHITZ EQUIVALENCE BETWEEN THE UNIVOQUE SETS
    Jiang, Kan
    Xi, Lifeng
    Xu, Shengnan
    Yang, Jinjin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (11) : 6089 - 6114
  • [47] LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND ALGEBRAIC PROPERTIES OF CONTRACTION RATIOS
    Rao, Hui
    Ruan, Huo-Jun
    Wang, Yang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (03) : 1109 - 1126
  • [48] Topological equivalence of complex curves and bi-Lipschitz homeomorphisms
    Fernandes, A
    MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (03) : 593 - 606
  • [49] Lipschitz contact equivalence of function germs in R2
    Birbrair, Lev
    Fernandes, Alexandre
    Grandjean, Vincent
    Gabrielov, Andrei
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2017, 17 (01) : 81 - 92
  • [50] Existence of moduli for bi-Lipschitz equivalence of analytic functions
    Henry, JP
    Parusinski, A
    COMPOSITIO MATHEMATICA, 2003, 136 (02) : 217 - 235