Multi-K-bi-Lipschitz equivalence in dimension two

被引:0
|
作者
Birbrair, Lev [1 ]
Mendes, Rodrigo [2 ,3 ]
机构
[1] Univ Fed Ceara UFC, Dept Matemat, Campus Pici Bloco 914, BR-60455760 Fortaleza, CE, Brazil
[2] Univ Integracao Int Lusofonia Afro Brasileira UNIL, Inst Ciencias Exatas & Nat, Campus Palmares, BR-62785000 Acarape, CE, Brazil
[3] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
来源
关键词
Width; Lipschitz Geometry; Contact equivalence; Singularity; Semialgebraic sets;
D O I
10.1007/s40863-024-00404-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Multi-K-equivalence of multi-germs of functions on the plane, definable in a polynomially bounded o-minimal structure. As in Birbrair et al. (Annali SNS Pisa 17:81-92, 2017. https://doi.org/10.2422/2036-2145.201503_014), we partition the germ of the plane at origin into zones of arcs in such a way that it produces a non-Archimedean space (set of orders and width functions) compatible with a given multi-germ, encoding its asymptotic behaviour. Such a partition is called Multi-pizza. We show the existence, uniqueness and complete invariance of multi-pizzas with respect to the Multi-K-bi-Lipschitz equivalence.
引用
收藏
页码:1165 / 1177
页数:13
相关论文
共 50 条
  • [1] Finiteness theorem for multi-K-bi-Lipschitz equivalence of map germs
    Birbrair, Lev
    Ferreira Costa, Joao Carlos
    Sena Filho, Edvalter Da Silva
    Mendes, Rodrigo
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2381 - 2387
  • [2] K-bi-Lipschitz equivalence of real function-germs
    Birbrair, L.
    Costa, J. C. F.
    Fernandes, A.
    Ruas, M. A. S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) : 1089 - 1095
  • [3] C0 and bi-Lipschitz K-equivalence of mappings
    Soares Ruas, Maria Aparecida
    Valette, Guillaume
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) : 293 - 308
  • [4] Invariants for bi-Lipschitz equivalence of ideals
    Bivia-Ausina, Carles
    Fukui, Toshizumi
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03): : 791 - 815
  • [5] Bi-Lipschitz A-equivalence of K-equivalent map-germs
    Costa, J. C. F.
    Nishimura, T.
    Ruas, M. A. S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) : 173 - 182
  • [6] Blow-analytic equivalence versus contact bi-Lipschitz equivalence
    Birbrair, Lev
    Fernandes, Alexandre
    Grandjean, Vincent
    Gaffney, Terence
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (03) : 989 - 1006
  • [7] Gap sequence, Lipschitz equivalence and box dimension of fractal sets
    Rao, Hui
    Ruan, Huo-Jun
    Yang, Ya-Min
    NONLINEARITY, 2008, 21 (06) : 1339 - 1347
  • [8] ISOMORPHISM AND BI-LIPSCHITZ EQUIVALENCE BETWEEN THE UNIVOQUE SETS
    Jiang, Kan
    Xi, Lifeng
    Xu, Shengnan
    Yang, Jinjin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (11) : 6089 - 6114
  • [9] Topological equivalence of complex curves and bi-Lipschitz homeomorphisms
    Fernandes, A
    MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (03) : 593 - 606
  • [10] Existence of moduli for bi-Lipschitz equivalence of analytic functions
    Henry, JP
    Parusinski, A
    COMPOSITIO MATHEMATICA, 2003, 136 (02) : 217 - 235