C0 and bi-Lipschitz K-equivalence of mappings

被引:0
|
作者
Soares Ruas, Maria Aparecida [2 ]
Valette, Guillaume [1 ]
机构
[1] Inst Matemat PAN, PL-31027 Krakow, Poland
[2] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1007/s00209-010-0728-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the classification of mappings up to K-equivalence. We give several results of this type. We study semialgebraic deformations up to semialgebraic C-0 K-equivalence and bi-Lipschitz K-equivalence. We give an algebraic criterion for bi-Lipschitz K-triviality in terms of semi-integral closure (Theorem 3.5). We also give a new proof of a result of Nishimura: we show that two germs of smooth mappings f, g : R-n -> R-n, finitely determined with respect to K-equivalence are C-0-K-equivalent if and only if they have the same degree in absolute value.
引用
收藏
页码:293 / 308
页数:16
相关论文
共 50 条
  • [1] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27
  • [2] On the extension of bi-Lipschitz mappings
    Birbrair, Lev
    Fernandes, Alexandre
    Jelonek, Zbigniew
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [3] Bi-Lipschitz parts of quasisymmetric mappings
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 589 - 648
  • [4] Invariants for bi-Lipschitz equivalence of ideals
    Bivia-Ausina, Carles
    Fukui, Toshizumi
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03): : 791 - 815
  • [5] Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target
    Hajlasz, Piotr
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (02) : 435 - 467
  • [6] Sobolev Mappings: Lipschitz Density is not a Bi-Lipschitz Invariant of the Target
    Piotr Hajłasz
    GAFA Geometric And Functional Analysis, 2007, 17 : 435 - 467
  • [7] Bi-Lipschitz A-equivalence of K-equivalent map-germs
    Costa, J. C. F.
    Nishimura, T.
    Ruas, M. A. S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) : 173 - 182
  • [8] Quantization dimension and temperature function for bi-Lipschitz mappings
    Roychowdhury, Mrinal Kanti
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (01) : 473 - 488
  • [9] A remark concerning bi-Lipschitz equivalence of Delone sets
    Navas, Andres
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (10) : 976 - 979
  • [10] Quantization dimension and temperature function for bi-Lipschitz mappings
    Mrinal Kanti Roychowdhury
    Israel Journal of Mathematics, 2012, 192 : 473 - 488