Sobolev Mappings: Lipschitz Density is not a Bi-Lipschitz Invariant of the Target

被引:0
|
作者
Piotr Hajłasz
机构
[1] University of Pittsburgh,Department of Mathematics
来源
关键词
Sobolev mappings; Lipschitz mappings; metric spaces; approximation; Primary: 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a question of density of Lipschitz mappings in the Sobolev class of mappings from a closed manifold into a singular space. The main result of the paper, Theorem 1.7, shows that if we change the metric in the target space to a bi-Lipschitz equivalent one, then the property of the density of Lipschitz mappings may be lost. Other main results in the paper are Theorems 1.2, 1.3, 1.6, 1.8.
引用
收藏
页码:435 / 467
页数:32
相关论文
共 50 条
  • [1] Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target
    Hajlasz, Piotr
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (02) : 435 - 467
  • [2] Sobolev Mappings: Lipschitz Density is not an Isometric Invariant of the Target
    Hajlasz, Piotr
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (12) : 2794 - 2809
  • [3] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27
  • [4] On the extension of bi-Lipschitz mappings
    Birbrair, Lev
    Fernandes, Alexandre
    Jelonek, Zbigniew
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [5] AN INVARIANT OF BI-LIPSCHITZ MAPS
    MOVAHEDILANKARANI, H
    FUNDAMENTA MATHEMATICAE, 1993, 143 (01) : 1 - 9
  • [6] Bi-Lipschitz parts of quasisymmetric mappings
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 589 - 648
  • [7] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [8] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121
  • [9] LIPSCHITZ HOMOTOPY AND DENSITY OF LIPSCHITZ MAPPINGS IN SOBOLEV SPACES
    Hajlasz, Piotr
    Schikorra, Armin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 593 - 604
  • [10] BI-LIPSCHITZ CONCORDANCE IMPLIES BI-LIPSCHITZ ISOTOPY
    LUUKKAINEN, J
    MONATSHEFTE FUR MATHEMATIK, 1991, 111 (01): : 35 - 46