K-bi-Lipschitz equivalence of real function-germs

被引:17
|
作者
Birbrair, L.
Costa, J. C. F.
Fernandes, A.
Ruas, M. A. S.
机构
[1] Univ Fed Ceara, Dept Matemat, BR-455760 Fortaleza, Ceara, Brazil
[2] Univ Estadual Paulista, Dept Matemat, IBILCE, BR-15054000 Sao Jose De Rio Preto, Brazil
[3] Univ Sao Paulo, Inst Sci & Math, Sao Carlos, SP, Brazil
关键词
D O I
10.1090/S0002-9939-06-08566-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the set of equivalence classes of germs of real polynomials of degree less than or equal to k, with respect to K-bi-Lipschitz equivalence, is finite.
引用
收藏
页码:1089 / 1095
页数:7
相关论文
共 50 条
  • [1] ON THE BI-LIPSCHITZ CONTACT EQUIVALENCE OF PLANE COMPLEX FUNCTION-GERMS
    Birbrair, Lev
    Fernandes, Alexandre
    Grandjean, Vincent
    [J]. JOURNAL OF SINGULARITIES, 2015, 13 : 1 - 10
  • [2] RIGIDITY OF BI-LIPSCHITZ EQUIVALENCE OF WEIGHTED HOMOGENEOUS FUNCTION-GERMS IN THE PLANE
    Fernandes, Alexandre
    Ruas, Maria
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (04) : 1125 - 1133
  • [3] Topological K-equivalence of analytic function-germs
    Alvarez, Sergio
    Birbrair, Lev
    Ferreira Costa, Joao Carlos
    Fernandes, Alexandre
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 338 - 345
  • [4] Finiteness theorem for multi-K-bi-Lipschitz equivalence of map germs
    Birbrair, Lev
    Ferreira Costa, Joao Carlos
    Sena Filho, Edvalter Da Silva
    Mendes, Rodrigo
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2381 - 2387
  • [5] Bi-Lipschitz A-equivalence of K-equivalent map-germs
    Costa, J. C. F.
    Nishimura, T.
    Ruas, M. A. S.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) : 173 - 182
  • [6] DIFFERENTIABLE INVARIANTS FOR HOLOMORPHIC FUNCTION-GERMS
    TADINI, WM
    LOIBEL, GF
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1981, 53 (03): : 627 - 627
  • [7] INVARIANTS AND CLASSIFICATION OF SIMPLE FUNCTION GERMS WITH RESPECT TO LIPSCHITZ A -EQUIVALENCE
    And, Nhan Nguyen
    Trivedi, Saurabh
    [J]. JOURNAL OF SINGULARITIES, 2022, 25 : 348 - 360
  • [8] Lipschitz contact equivalence of function germs in R2
    Birbrair, Lev
    Fernandes, Alexandre
    Grandjean, Vincent
    Gabrielov, Andrei
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2017, 17 (01) : 81 - 92
  • [9] Jacobian-squared function-germs
    Nishimura, Takashi
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2017, 13 (04) : 711 - 728
  • [10] Modified analytic trivialization for weighted homogeneous function-germs
    Fukui, T
    Paunescu, L
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (02) : 433 - 446