Lipschitz equivalence of fractal triangles

被引:0
|
作者
Zhu, Zhi-Yong [1 ]
Dong, En-Mei [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shannxi, Peoples R China
关键词
Fractal; Lipschitz equivalence; Symbolic cantor set; Graph-directed sets; Fractal triangle; Totally disconnected; SELF-SIMILAR SETS; CANTOR SETS; HAUSDORFF DIMENSION;
D O I
10.1016/j.jmaa.2015.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an integer number n >= 2 and two digit sets A subset of {k(1)alpha + k(1)beta : k(1) + k(2) <= n - 1 and k(1), k(2) is an element of N boolean OR {0}}, B subset of {k(1)alpha + k(2)beta : 2 <= k(1) +k(2) <= n and k(1), k(2) is an element of N}, where alpha = (1,0), beta = (1/2, root 3/2), there is a self-similar set T = T(A, B) subset of R-2 satisfying the set equation: T = [T + A) boolean OR (B - T)]/n. We call such T a fractal triangle. By examining deeper the 'types' of connected components in each step of constructing such fractal triangles, we in this paper successfully characterize the Lipschitz equivalence of two classes of totally disconnected fractal triangles in it through the number of basic triangles in the first step of construction. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1157 / 1176
页数:20
相关论文
共 50 条
  • [21] Lipschitz equivalence of fractals generated by nested cubes
    Xi, Lifeng
    Xiong, Ying
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1287 - 1308
  • [22] On the Lipschitz equivalence of self-affine sets
    Luo, Jun Jason
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1032 - 1042
  • [23] Lipschitz equivalence of fractals generated by nested cubes
    Lifeng Xi
    Ying Xiong
    Mathematische Zeitschrift, 2012, 271 : 1287 - 1308
  • [24] Lipschitz equivalence of self-conformal sets
    Xi, LF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 369 - 382
  • [25] LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND IRREDUCIBILITY OF POLYNOMIALS
    Luo, Jun Jason
    Ruan, Huo-Jun
    Wang, Yi-Lin
    MATHEMATIKA, 2018, 64 (03) : 730 - 741
  • [26] Lipschitz equivalence of a class of general Sierpinski carpets
    Wen, Zhixiong
    Zhu, Zhiyong
    Deng, Guotai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 16 - 23
  • [27] Ambient Lipschitz Equivalence of Real Surface Singularities
    Birbrair, Lev
    Gabrielov, Andrei
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (20) : 6347 - 6361
  • [28] Invariants for bi-Lipschitz equivalence of ideals
    Bivia-Ausina, Carles
    Fukui, Toshizumi
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03): : 791 - 815
  • [29] Lipschitz equivalence of self-similar sets
    Rao, H
    Ruan, HJ
    Xi, LF
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 191 - 196
  • [30] Lipschitz equivalence of graph-directed fractals
    Xiong, Ying
    Xi, Lifeng
    STUDIA MATHEMATICA, 2009, 194 (02) : 197 - 205