AN EQUIVALENCE RELATION IN SOME FRACTAL SETS

被引:0
|
作者
AURELL, E [1 ]
机构
[1] CENS,SERV PHYS THEOR,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1016/0375-9601(88)90706-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:449 / 455
页数:7
相关论文
共 50 条
  • [1] Lipschitz equivalence of fractal sets in ℝ
    GuoTai Deng
    XingGang He
    Science China Mathematics, 2012, 55 : 2095 - 2107
  • [2] Lipschitz equivalence of fractal sets in R
    DENG GuoTai & HE XingGang College of Mathematics and Statistics
    Science China(Mathematics), 2012, 55 (10) : 2094 - 2106
  • [3] Lipschitz equivalence of fractal sets in a"e
    Deng GuoTai
    He XingGang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (10) : 2095 - 2107
  • [4] An Equivalence Relation for Local Path Sets
    Knepper, Ross A.
    Srinivasa, Siddhartha S.
    Mason, Matthew T.
    ALGORITHMIC FOUNDATIONS OF ROBOTICS IX, 2010, 68 : 19 - +
  • [5] SMOOTH SETS FOR A BOREL EQUIVALENCE RELATION
    UZCATEGUI, CE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (06) : 2025 - 2039
  • [6] Gap sequence, Lipschitz equivalence and box dimension of fractal sets
    Rao, Hui
    Ruan, Huo-Jun
    Yang, Ya-Min
    NONLINEARITY, 2008, 21 (06) : 1339 - 1347
  • [7] ON THE HAUSDORFF DIMENSION OF SOME FRACTAL SETS
    PRZYTYCKI, F
    URBANSKI, M
    STUDIA MATHEMATICA, 1989, 93 (02) : 155 - 186
  • [8] Lower dimensions of some fractal sets
    Chen, Haipeng
    Wu, Min
    Wei, Chun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1022 - 1036
  • [9] SOME COMPUTATIONS OF L-EQUIVALENCE SETS
    LEGRAND, A
    DIDIERJEAN, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (02): : 103 - 106
  • [10] Decomposition of rough sets based on fuzzy equivalence relation
    Xu, Xiao-Jing
    Pei, Hai-Feng
    Shi, Kai-Quan
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2007, 29 (04): : 626 - 628