Lipschitz equivalence of fractal sets in R

被引:0
|
作者
DENG GuoTai & HE XingGang College of Mathematics and Statistics
机构
基金
中国国家自然科学基金;
关键词
dust-like; graph-directed iterating function systems; Lipschitz equivalence; self-similar sets;
D O I
暂无
中图分类号
O189 [拓扑(形势几何学)];
学科分类号
070104 ;
摘要
Let T(q,D) be a self-similar(fractal) set generated by {fi(x) = 1 q(x + di)}iN=1 where integer q > 1 and D = {d1,d2,...,dN } R.To show the Lipschitz equivalence of T(q,D) and a dust-like T(q,C),one general restriction is D Q by Peres et al.[Israel J Math,2000,117:353-379].In this paper,we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques.Several examples are given to illustrate our theory.
引用
收藏
页码:2094 / 2106
页数:13
相关论文
共 50 条
  • [1] Lipschitz equivalence of fractal sets in ℝ
    GuoTai Deng
    XingGang He
    Science China Mathematics, 2012, 55 : 2095 - 2107
  • [2] Lipschitz equivalence of fractal sets in a"e
    Deng GuoTai
    He XingGang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (10) : 2095 - 2107
  • [3] Gap sequence, Lipschitz equivalence and box dimension of fractal sets
    Rao, Hui
    Ruan, Huo-Jun
    Yang, Ya-Min
    NONLINEARITY, 2008, 21 (06) : 1339 - 1347
  • [4] Lipschitz equivalence of fractal triangles
    Zhu, Zhi-Yong
    Dong, En-Mei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 1157 - 1176
  • [5] ON THE LIPSCHITZ EQUIVALENCE OF CANTOR SETS
    FALCONER, KJ
    MARSH, DT
    MATHEMATIKA, 1992, 39 (78) : 223 - 233
  • [6] LIPSCHITZ EQUIVALENCE OF MCMULLEN SETS
    Li, Boming
    Li, Wenxia
    Miao, Jun Jie
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2013, 21 (3-4)
  • [7] Topological invariants and Lipschitz equivalence of fractal squares
    Ruan, Huo-Jun
    Wang, Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (01) : 327 - 344
  • [8] On the Lipschitz equivalence of self-affine sets
    Luo, Jun Jason
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1032 - 1042
  • [9] Lipschitz equivalence of self-conformal sets
    Xi, LF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 369 - 382
  • [10] LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND IRREDUCIBILITY OF POLYNOMIALS
    Luo, Jun Jason
    Ruan, Huo-Jun
    Wang, Yi-Lin
    MATHEMATIKA, 2018, 64 (03) : 730 - 741