Lipschitz equivalence of fractal sets in R

被引:0
|
作者
DENG GuoTai & HE XingGang College of Mathematics and Statistics
机构
基金
中国国家自然科学基金;
关键词
dust-like; graph-directed iterating function systems; Lipschitz equivalence; self-similar sets;
D O I
暂无
中图分类号
O189 [拓扑(形势几何学)];
学科分类号
070104 ;
摘要
Let T(q,D) be a self-similar(fractal) set generated by {fi(x) = 1 q(x + di)}iN=1 where integer q > 1 and D = {d1,d2,...,dN } R.To show the Lipschitz equivalence of T(q,D) and a dust-like T(q,C),one general restriction is D Q by Peres et al.[Israel J Math,2000,117:353-379].In this paper,we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques.Several examples are given to illustrate our theory.
引用
收藏
页码:2094 / 2106
页数:13
相关论文
共 50 条
  • [21] Lipschitz equivalence of self-similar sets with triangular pattern
    ZHU ZhiYong1
    2Department of Mathematics
    3Institute of Mathematics
    ScienceChina(Mathematics), 2011, 54 (05) : 1019 - 1026
  • [22] Higher dimensional Frobenius problem and Lipschitz equivalence of Cantor sets
    Rao, Hui
    Zhang, Yuan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (05): : 868 - 881
  • [23] A remark concerning bi-Lipschitz equivalence of Delone sets
    Navas, Andres
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (10) : 976 - 979
  • [24] SELF-SIMILARITY AND LIPSCHITZ EQUIVALENCE OF UNIONS OF CANTOR SETS
    Liu, Chuntai
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (05)
  • [25] Lipschitz equivalence of self-similar sets with triangular pattern
    ZhiYong Zhu
    Ying Xiong
    LiFeng Xi
    Science China Mathematics, 2011, 54 : 1019 - 1026
  • [26] Lipschitz equivalence of dust-like self-similar sets
    Xi, Li-Feng
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (03) : 683 - 691
  • [27] LIPSCHITZ EQUIVALENCE OF A CLASS OF SELF-SIMILAR SETS WITH COMPLETE OVERLAPS
    Guo, Qiuli
    Li, Hao
    Wang, Qin
    Xi, Lifeng
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) : 229 - 243
  • [28] Quasi-Lipschitz equivalence of Ahlfors-David regular sets
    Wang, Qin
    Xi, Lifeng
    NONLINEARITY, 2011, 24 (03) : 941 - 950
  • [29] Self-similar sets, simple augmented trees and their Lipschitz equivalence
    Luo, Jun Jason
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (02): : 428 - 446
  • [30] Lipschitz equivalence of dust-like self-similar sets
    Li-Feng Xi
    Mathematische Zeitschrift, 2010, 266 : 683 - 691