Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets

被引:0
|
作者
Qin Wang
LiFeng Xi
机构
[1] Zhejiang Wanli University,School of Computer Science and Information Technology
[2] Zhejiang Wanli University,Institute of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
fractal; quasi-Lipschitz equivalence; Ahlfors-David regularity; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose compact sets E and F are quasi uniformly disconnected and quasi Ahlfors-David regular. This paper proves that E and F are quasi-Lipschitz equivalent if and only if they have the same Hausdorff dimension.
引用
收藏
页码:2573 / 2582
页数:9
相关论文
共 50 条
  • [1] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin XI LiFeng School of Computer Science and Information Technology Zhejiang Wanli University Ningbo ChinaInstitute of Mathematics Zhejiang Wanli University Ningbo China
    Science China(Mathematics), 2011, 54 (12) : 2573 - 2582
  • [2] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin1 & XI LiFeng2
    2Institute of Mathematics
    Science China Mathematics, 2011, (12) : 2573 - 2582
  • [3] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Wang Qin
    Xi LiFeng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) : 2573 - 2582
  • [4] Quasi-Lipschitz equivalence of Ahlfors-David regular sets
    Wang, Qin
    Xi, Lifeng
    NONLINEARITY, 2011, 24 (03) : 941 - 950
  • [5] QUASI-LIPSCHITZ EQUIVALENCE OF SUBSETS OF AHLFORS-DAVID REGULAR SETS
    Guo, Qiuli
    Li, Hao
    Wang, Qin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 759 - 769
  • [6] Quasi Ahlfors-David regularity of Moran sets
    Sun, Yu
    Lou, Manli
    Lu, Fan
    Xi, Lifeng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 219 - 231
  • [7] On the distance sets of Ahlfors-David regular sets
    Orponen, Thomas
    ADVANCES IN MATHEMATICS, 2017, 307 : 1029 - 1045
  • [8] Quasi-Lipschitz equivalence of fractals
    Li-Feng Xi
    Israel Journal of Mathematics, 2007, 160 : 1 - 21
  • [9] Quasi-Lipschitz equivalence of fractals
    Xi, Li-Feng
    ISRAEL JOURNAL OF MATHEMATICS, 2007, 160 (01) : 1 - 21
  • [10] AHLFORS-DAVID REGULAR SETS AND BILIPSCHITZ MAPS
    Mattila, Pertti
    Saaranen, Pirjo
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (02) : 487 - 502