On the distance sets of Ahlfors-David regular sets

被引:21
|
作者
Orponen, Thomas [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
基金
芬兰科学院;
关键词
Distance sets; Packing dimension; Entropy;
D O I
10.1016/j.aim.2016.11.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
prove that if empty set not equal K subset of R-2 is a compact s-Ahlfors-David regular set with s >= 1, then dim(p) D(K) = 1, where D(K) := {vertical bar x - y vertical bar : x, y is an element of K} is the distance set of K, and dime stands for packing dimension. The same proof strategy applies to other problems of similar nature. For instance, one can show that if empty set not equal K subset of R-2 is a compact s-Ahlfors David regular set with s >= 1, then there exists a point x(0) is an element of K such that dime K . (K - x(0)) = 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1029 / 1045
页数:17
相关论文
共 50 条
  • [1] AHLFORS-DAVID REGULAR SETS AND BILIPSCHITZ MAPS
    Mattila, Pertti
    Saaranen, Pirjo
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (02) : 487 - 502
  • [2] Ahlfors-David Regular Sets, Point Spectrum and Dirichlet Spaces
    El-Fallah, O.
    Elmadani, Y.
    Labghail, I.
    RESULTS IN MATHEMATICS, 2024, 79 (02)
  • [3] Quasi-Lipschitz equivalence of Ahlfors-David regular sets
    Wang, Qin
    Xi, Lifeng
    NONLINEARITY, 2011, 24 (03) : 941 - 950
  • [4] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin XI LiFeng School of Computer Science and Information Technology Zhejiang Wanli University Ningbo ChinaInstitute of Mathematics Zhejiang Wanli University Ningbo China
    Science China(Mathematics), 2011, 54 (12) : 2573 - 2582
  • [5] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Qin Wang
    LiFeng Xi
    Science China Mathematics, 2011, 54 : 2573 - 2582
  • [6] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Wang Qin
    Xi LiFeng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) : 2573 - 2582
  • [7] QUASI-LIPSCHITZ EQUIVALENCE OF SUBSETS OF AHLFORS-DAVID REGULAR SETS
    Guo, Qiuli
    Li, Hao
    Wang, Qin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 759 - 769
  • [8] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin1 & XI LiFeng2
    2Institute of Mathematics
    Science China Mathematics, 2011, (12) : 2573 - 2582
  • [9] Quasi Ahlfors-David regularity of Moran sets
    Sun, Yu
    Lou, Manli
    Lu, Fan
    Xi, Lifeng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 219 - 231
  • [10] AHLFORS-DAVID REGULAR SUBSETS OF FRACTALS
    Pan, Yue
    Xiong, Ying
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (05)