On the distance sets of Ahlfors-David regular sets

被引:21
|
作者
Orponen, Thomas [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
基金
芬兰科学院;
关键词
Distance sets; Packing dimension; Entropy;
D O I
10.1016/j.aim.2016.11.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
prove that if empty set not equal K subset of R-2 is a compact s-Ahlfors-David regular set with s >= 1, then dim(p) D(K) = 1, where D(K) := {vertical bar x - y vertical bar : x, y is an element of K} is the distance set of K, and dime stands for packing dimension. The same proof strategy applies to other problems of similar nature. For instance, one can show that if empty set not equal K subset of R-2 is a compact s-Ahlfors David regular set with s >= 1, then there exists a point x(0) is an element of K such that dime K . (K - x(0)) = 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1029 / 1045
页数:17
相关论文
共 50 条
  • [41] Maximal 2-distance sets containing the regular simplex
    Nozaki, Hiroshi
    Shinohara, Masashi
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [42] Theory of sets - The distance of two sets
    Frechet, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1923, 176 : 1123 - 1124
  • [43] Sets of distance
    Piccard, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1940, 210 : 780 - 783
  • [44] DISTANCE SETS
    KELLY, LM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (03) : 247 - 247
  • [45] DISTANCE SETS
    KELLY, LM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (02): : 187 - 194
  • [46] Traces of Sobolev spaces on Ahlfors sets of Carnot groups
    S. K. Vodop’yanov
    I. M. Pupyshev
    Doklady Mathematics, 2006, 74 : 799 - 804
  • [47] Traces of Sobolev functions on the Ahlfors sets of Carnot groups
    S. K. Vodop’yanov
    I. M. Pupyshev
    Siberian Mathematical Journal, 2007, 48 : 961 - 978
  • [48] Traces of Sobolev spaces on Ahlfors sets of Carnot groups
    Vodop'yanov, S. K.
    Pupyshev, I. M.
    DOKLADY MATHEMATICS, 2006, 74 (03) : 799 - 804
  • [49] Regular independent sets
    Caro, Yair
    Hansberg, Adriana
    Pepper, Ryan
    DISCRETE APPLIED MATHEMATICS, 2016, 203 : 35 - 46
  • [50] Regular Sets of Operations
    Machida, Hajime
    Pantovic, Jovanka
    Rosenberg, Ivo G.
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 19 (1-3) : 149 - 162