Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets

被引:0
|
作者
Qin Wang
LiFeng Xi
机构
[1] Zhejiang Wanli University,School of Computer Science and Information Technology
[2] Zhejiang Wanli University,Institute of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
fractal; quasi-Lipschitz equivalence; Ahlfors-David regularity; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose compact sets E and F are quasi uniformly disconnected and quasi Ahlfors-David regular. This paper proves that E and F are quasi-Lipschitz equivalent if and only if they have the same Hausdorff dimension.
引用
收藏
页码:2573 / 2582
页数:9
相关论文
共 50 条
  • [31] Non-convex hybrid algorithm for a family of countable quasi-Lipschitz mappings and application
    Jinyu Guan
    Yanxia Tang
    Pengcheng Ma
    Yongchun Xu
    Yongfu Su
    Fixed Point Theory and Applications, 2015
  • [32] AHLFORS,L PROBLEM OF QUASI-CONFORMAL MAPPING EXTENTION AND QUASI-CONFORMAL EQUIVALENCE OF DOMAINS TO SPHERE
    KOPYLOV, AP
    DOKLADY AKADEMII NAUK SSSR, 1976, 230 (05): : 1025 - 1028
  • [33] Independent sets in quasi-regular graphs
    Sapozhenko, Alexander A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1206 - 1210
  • [34] Hybrid iterative algorithm for finite families of countable Bregman quasi-Lipschitz mappings with applications in Banach spaces
    Chen, Minjiang
    Bi, Jianzhi
    Su, Yongfu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [35] Colombeau generalized functions on quasi-regular sets
    Aragona, J
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 371 - 399
  • [36] Hybrid iterative algorithm for finite families of countable Bregman quasi-Lipschitz mappings with applications in Banach spaces
    Minjiang Chen
    Jianzhi Bi
    Yongfu Su
    Journal of Inequalities and Applications, 2015
  • [37] Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces
    Alvarado, Ryan
    Mitrea, Marius
    HARDY SPACES ON AHLFORS-REGULAR QUASI METRIC SPACES: A SHARP THEORY, 2015, 2142 : 449 - 469
  • [38] QUASI-REGULAR RELATIONS - A NEW CLASS OF RELATIONS ON SETS
    Romano, Daniel A.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2013, 93 (107): : 127 - 132
  • [39] REGULAR SETS AND QUASI-SYMMETRIC 2-DESIGNS
    NEUMAIER, A
    LECTURE NOTES IN MATHEMATICS, 1982, 969 : 258 - 275
  • [40] NONREMOVABLE CANTOR SETS FOR BOUNDED QUASI-REGULAR MAPPINGS
    RICKMAN, S
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1995, 20 (01): : 155 - 165