QUASI-LOWER DIMENSION AND QUASI-LIPSCHITZ MAPPING

被引:13
|
作者
Chen, Haipeng [1 ]
Du, Yali [2 ]
Wei, Chun [3 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Sao Paulo, Inst Math & Stat, BR-05508090 Sao Paulo, SP, Brazil
[3] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Peoples R China
关键词
Quasi-Lower Dimension; Quasi-Lipschitz Mapping; Sets Defined by Digit Restrictions; CANTOR SETS; MORAN SETS; EQUIVALENCE; FRACTALS;
D O I
10.1142/S0218348X17500347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the lower dimension is not invariant under quasi-Lipschitz mapping, and then we find an invariant named the quasi-lower dimension. We also compute the quasi-lower dimension of a class of sets defined by digit restrictions, and then give an example to distinguish the quasi-lower dimension and other dimensions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Lipschitz estimates in quasi-Banach Schatten ideals
    McDonald, Edward
    Sukochev, Fedor
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 571 - 619
  • [42] Lipschitz estimates in quasi-Banach Schatten ideals
    Edward McDonald
    Fedor Sukochev
    Mathematische Annalen, 2022, 383 : 571 - 619
  • [43] RIESZ AND QUASI-COMPACT ENDOMORPHISMS OF LIPSCHITZ ALGEBRAS
    Behrouzi, Farid
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (03): : 793 - 802
  • [44] Some results on Lipschitz quasi-arithmetic means
    Beliakov, Gleb
    Calvo, Tomasa
    James, Simon
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1370 - 1375
  • [45] LIPSCHITZ-CONDITIONS AND QUASI-CONFORMAL MAPPINGS
    NAKKI, R
    PALKA, B
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (03) : 377 - 401
  • [46] Lower semicontinuity of quasi-convex bulk energies in SBV and integral representation in dimension reduction
    Babadjian, Jean-Francois
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (06) : 1921 - 1950
  • [47] QUASI-ORTHOGONAL DIMENSION OF EUCLIDEAN SPACES
    KAINEN, PC
    KURKOVA, V
    APPLIED MATHEMATICS LETTERS, 1993, 6 (03) : 7 - 10
  • [48] NAGATA DIMENSION AND QUASI-MOBIUS MAPS
    Xie, Xiangdong
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 1 - 9
  • [49] Representation dimension of quasi-tilted algebras
    Oppermann, Steffen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 435 - 456
  • [50] On dimension elevation in Quasi Extended Chebyshev spaces
    Mazure, Marie-Laurence
    NUMERISCHE MATHEMATIK, 2008, 109 (03) : 459 - 475