QUASI-LOWER DIMENSION AND QUASI-LIPSCHITZ MAPPING

被引:13
|
作者
Chen, Haipeng [1 ]
Du, Yali [2 ]
Wei, Chun [3 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Sao Paulo, Inst Math & Stat, BR-05508090 Sao Paulo, SP, Brazil
[3] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Peoples R China
关键词
Quasi-Lower Dimension; Quasi-Lipschitz Mapping; Sets Defined by Digit Restrictions; CANTOR SETS; MORAN SETS; EQUIVALENCE; FRACTALS;
D O I
10.1142/S0218348X17500347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the lower dimension is not invariant under quasi-Lipschitz mapping, and then we find an invariant named the quasi-lower dimension. We also compute the quasi-lower dimension of a class of sets defined by digit restrictions, and then give an example to distinguish the quasi-lower dimension and other dimensions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A stabilized iRBF mesh-free method for quasi-lower bound shakedown analysis of structures
    Ho, Phuc L. H.
    Le, Canh, V
    COMPUTERS & STRUCTURES, 2020, 228
  • [22] Cloud hybrid methods for solving split equilibrium and fixed point problems for a family of countable quasi-Lipschitz mappings and applications
    Xu, Yongchun
    Tang, Yanxia
    Guan, Jinyu
    Su, Yongfu
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 752 - 770
  • [23] Tomographic mapping of the hidden dimension in quasi-particle interference
    C. A. Marques
    M. S. Bahramy
    C. Trainer
    I. Marković
    M. D. Watson
    F. Mazzola
    A. Rajan
    T. D. Raub
    P. D. C. King
    P. Wahl
    Nature Communications, 12
  • [24] Tomographic mapping of the hidden dimension in quasi-particle interference
    Marques, C. A.
    Bahramy, M. S.
    Trainer, C.
    Markovic, I
    Watson, M. D.
    Mazzola, F.
    Rajan, A.
    Raub, T. D.
    King, P. D. C.
    Wahl, P.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] Best approximation, coincidence and fixed point theorems for quasi-lower semicontinuous set-valued maps in hyperconvex metric spaces
    Amini-Harandi, A.
    Farajzadeh, A. P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5151 - 5156
  • [26] Quasi-injective dimension
    Gheibi, Mohsen
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (02)
  • [27] QUASI-PROJECTIVE DIMENSION
    Gheibi, Mohsen
    Jorgensen, David A.
    Takahashi, Ryo
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 312 (01) : 113 - 147
  • [28] QUASI MAPPING SINGULARITIES
    Alharbi, Fawaz
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 537 - 552
  • [29] LIPSCHITZ CLASSES AND QUASI-CONFORMAL MAPPINGS
    GEHRING, FW
    MARTIO, O
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01): : 203 - 219
  • [30] Lipschitz structure of quasi-Banach spaces
    F. Albiac
    N. J. Kalton
    Israel Journal of Mathematics, 2009, 170