Local linear quantile regression

被引:435
|
作者
Yu, KM [1 ]
Jones, MC [1 ]
机构
[1] Open Univ, Dept Stat, Milton Keynes MK7 6AA, Bucks, England
关键词
bandwidth selection; conditional quantile; kernel estimator; local linear regression; reference chart; rule of thumb;
D O I
10.2307/2669619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study nonparametric regression quantile estimation by kernel weighted local linear fitting. Two such estimators are considered. One is based on localizing the characterization of a regression quantile as the minimizer of E{rho(p)(Y-a)\X = x}, where rho(p) is the appropriate "check" function. The other follows by inverting a local linear conditional distribution estimator and involves two smoothing parameters, rather than one. Our aim is to present fully operational versions of both approaches and to show that each works quite well; although either might be used in practice, we have a particular preference for the second. Our automatic smoothing parameter selection method is novel; the main regression quantile smoothing parameters are chosen by rule-of-thumb adaptations of state-of-the-art methods for smoothing parameter selection for regression mean estimation. The techniques are illustrated by application to two datasets and compared in simulations.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 50 条
  • [1] Local linear spatial quantile regression
    Hallin, Marc
    Lu, Zudi
    Yu, Keming
    BERNOULLI, 2009, 15 (03) : 659 - 686
  • [2] Adaptive local linear quantile regression
    Su, Yu-nan
    Tian, Mao-zai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 509 - 516
  • [3] Adaptive local linear quantile regression
    Yu-nan Su
    Mao-zai Tian
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27
  • [4] Local linear additive quantile regression
    Yu, KM
    Lu, ZD
    SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) : 333 - 346
  • [5] Functional quantile regression: local linear modelisation
    Kaid, Zoulikha
    Laksaci, Ali
    FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 155 - 160
  • [6] A comparison of local constant and local linear regression quantile estimators
    Dept of Statistics, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
    Comput Stat Data Anal, 2 (159-166):
  • [7] A comparison of local constant and local linear regression quantile estimators
    Yu, KM
    Jones, MC
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 25 (02) : 159 - 166
  • [8] LOCAL LINEAR QUANTILE REGRESSION WITH DEPENDENT CENSORED DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    STATISTICA SINICA, 2009, 19 (04) : 1621 - 1640
  • [9] Improved double kernel local linear quantile regression
    Jones, M. C.
    Yu, Keming
    STATISTICAL MODELLING, 2007, 7 (04) : 377 - 389
  • [10] Local linear quantile regression with truncated and dependent data
    Wang, Jiang-Feng
    Ma, Wei-Min
    Fan, Guo-Liang
    Wen, Li-Min
    STATISTICS & PROBABILITY LETTERS, 2015, 96 : 232 - 240