Improved double kernel local linear quantile regression

被引:11
|
作者
Jones, M. C. [2 ]
Yu, Keming [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Open Univ, Dept Stat, Milton Keynes MK7 6AA, Bucks, England
关键词
asymmetric Laplace distribution; bandwidth selection; exponential tails; maximum likelihood;
D O I
10.1177/1471082X0700700407
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
As sample quantiles can be obtained as maximum likelihood estimates of location parameters in suitable asymmetric Laplace distributions, so kernel estimates of quantiles can be obtained as maximum likelihood estimates of location parameters in a general class of distributions with simple exponential tails. In this paper, this observation is applied to kernel quantile regression. In doing so, a new double kernel local linear quantile regression estimator is obtained which proves to be consistently superior in performance to the earlier double kernel local linear quantile regression estimator proposed by the authors. It is also straightforward to compute and more readily affords a first derivative estimate. An alternative method of selection for one of the two bandwidths involved also arises naturally but proves not to be so consistently successful.
引用
收藏
页码:377 / 389
页数:13
相关论文
共 50 条
  • [1] Improved local quantile regression
    Liu, Xi
    Yu, Keming
    Xu, Qifa
    Tang, Xueqing
    [J]. STATISTICAL MODELLING, 2019, 19 (05) : 501 - 523
  • [2] Local linear quantile regression
    Yu, KM
    Jones, MC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 228 - 237
  • [3] Local linear spatial quantile regression
    Hallin, Marc
    Lu, Zudi
    Yu, Keming
    [J]. BERNOULLI, 2009, 15 (03) : 659 - 686
  • [4] Adaptive local linear quantile regression
    Yu-nan Su
    Mao-zai Tian
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27
  • [5] Adaptive local linear quantile regression
    Su, Yu-nan
    Tian, Mao-zai
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 509 - 516
  • [6] Adaptive Local Linear Quantile Regression
    Yu-nan Su 1
    [J]. Acta Mathematicae Applicatae Sinica, 2011, 27 (03) : 509 - 516
  • [7] Local linear additive quantile regression
    Yu, KM
    Lu, ZD
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) : 333 - 346
  • [8] Smoothing regression quantile by combining k-NN estimation with local linear kernel fitting
    Yu, KM
    [J]. STATISTICA SINICA, 1999, 9 (03) : 759 - 774
  • [9] Functional quantile regression: local linear modelisation
    Kaid, Zoulikha
    Laksaci, Ali
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 155 - 160
  • [10] A comparison of local constant and local linear regression quantile estimators
    Dept of Statistics, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
    [J]. Comput Stat Data Anal, 2 (159-166):