Functional quantile regression: local linear modelisation

被引:4
|
作者
Kaid, Zoulikha [1 ]
Laksaci, Ali [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Stat & Proc Stochast, BP 89, Sidi Bel Abbes 22000, Algeria
关键词
CONDITIONAL QUANTILE;
D O I
10.1007/978-3-319-55846-2_20
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A nonparametric local linear estimator of the conditional quantiles of a scalar response variable Y given a random variable X taking values in a semi-metric space. We establish the almost complete consistency and the asymptotic normality of this estimate. We prove that the asymptotic proprieties of this estimate are closely related to some topological characteristics of the data. Finally, a Monte Carlo study is carried out to evaluate the performance of this estimate.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [1] Local linear quantile regression
    Yu, KM
    Jones, MC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 228 - 237
  • [2] Local linear spatial quantile regression
    Hallin, Marc
    Lu, Zudi
    Yu, Keming
    [J]. BERNOULLI, 2009, 15 (03) : 659 - 686
  • [3] Adaptive local linear quantile regression
    Yu-nan Su
    Mao-zai Tian
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27
  • [4] Adaptive local linear quantile regression
    Su, Yu-nan
    Tian, Mao-zai
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 509 - 516
  • [5] Adaptive Local Linear Quantile Regression
    Yu-nan Su 1
    [J]. Acta Mathematicae Applicatae Sinica, 2011, 27 (03) : 509 - 516
  • [6] Local linear additive quantile regression
    Yu, KM
    Lu, ZD
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) : 333 - 346
  • [7] Partial functional linear quantile regression
    TANG QingGuo
    CHENG LongSheng
    [J]. Science China Mathematics, 2014, 57 (12) : 2589 - 2608
  • [8] Partial functional linear quantile regression
    QingGuo Tang
    LongSheng Cheng
    [J]. Science China Mathematics, 2014, 57 : 2589 - 2608
  • [9] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [10] Partial functional linear quantile regression
    Tang QingGuo
    Cheng LongSheng
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2589 - 2608