Adaptive local linear quantile regression

被引:5
|
作者
Su, Yu-nan [1 ]
Tian, Mao-zai [1 ]
机构
[1] Remin Univ China, Ctr Appl Stat, Sch Stat, Beijing 100872, Peoples R China
来源
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
quantile regression; local linear regression; adaptive smoothing; automatic choice of window size; Robustness;
D O I
10.1007/s10255-011-0087-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new method of local linear adaptive smoothing for nonparametric conditional quantile regression. Some theoretical properties of the procedure are investigated. Then we demonstrate the performance of the method on a simulated example and compare it with other methods. The simulation results demonstrate a reasonable performance of our method proposed especially in situations when the underlying image is piecewise linear or can be approximated by such images. Generally speaking, our method outperforms most other existing methods in the sense of the mean square estimation (MSE) and mean absolute estimation (MAE) criteria. The procedure is very stable with respect to increasing noise level and the algorithm can be easily applied to higher dimensional situations.
引用
收藏
页码:509 / 516
页数:8
相关论文
共 50 条
  • [1] Adaptive local linear quantile regression
    Yu-nan Su
    Mao-zai Tian
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27
  • [2] Adaptive Local Linear Quantile Regression
    Yu-nan Su 1
    [J]. Acta Mathematicae Applicatae Sinica, 2011, 27 (03) : 509 - 516
  • [3] Local linear quantile regression
    Yu, KM
    Jones, MC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 228 - 237
  • [4] Local linear spatial quantile regression
    Hallin, Marc
    Lu, Zudi
    Yu, Keming
    [J]. BERNOULLI, 2009, 15 (03) : 659 - 686
  • [5] Local linear additive quantile regression
    Yu, KM
    Lu, ZD
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) : 333 - 346
  • [6] Functional quantile regression: local linear modelisation
    Kaid, Zoulikha
    Laksaci, Ali
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 155 - 160
  • [7] A comparison of local constant and local linear regression quantile estimators
    Yu, KM
    Jones, MC
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 25 (02) : 159 - 166
  • [8] LOCAL LINEAR QUANTILE REGRESSION WITH DEPENDENT CENSORED DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    [J]. STATISTICA SINICA, 2009, 19 (04) : 1621 - 1640
  • [9] Improved double kernel local linear quantile regression
    Jones, M. C.
    Yu, Keming
    [J]. STATISTICAL MODELLING, 2007, 7 (04) : 377 - 389
  • [10] Local linear quantile regression with truncated and dependent data
    Wang, Jiang-Feng
    Ma, Wei-Min
    Fan, Guo-Liang
    Wen, Li-Min
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 96 : 232 - 240