Improved double kernel local linear quantile regression

被引:11
|
作者
Jones, M. C. [2 ]
Yu, Keming [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Open Univ, Dept Stat, Milton Keynes MK7 6AA, Bucks, England
关键词
asymmetric Laplace distribution; bandwidth selection; exponential tails; maximum likelihood;
D O I
10.1177/1471082X0700700407
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
As sample quantiles can be obtained as maximum likelihood estimates of location parameters in suitable asymmetric Laplace distributions, so kernel estimates of quantiles can be obtained as maximum likelihood estimates of location parameters in a general class of distributions with simple exponential tails. In this paper, this observation is applied to kernel quantile regression. In doing so, a new double kernel local linear quantile regression estimator is obtained which proves to be consistently superior in performance to the earlier double kernel local linear quantile regression estimator proposed by the authors. It is also straightforward to compute and more readily affords a first derivative estimate. An alternative method of selection for one of the two bandwidths involved also arises naturally but proves not to be so consistently successful.
引用
收藏
页码:377 / 389
页数:13
相关论文
共 50 条
  • [41] Local linear kernel regression with long-range dependent errors
    Anh, V
    Wolff, R
    Gao, JT
    Tieng, Q
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 1999, 41 (04) : 463 - 479
  • [42] Partial functional linear quantile regression
    Tang QingGuo
    Cheng LongSheng
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2589 - 2608
  • [43] Partially linear censored quantile regression
    Neocleous, Tereza
    Portnoy, Stephen
    [J]. LIFETIME DATA ANALYSIS, 2009, 15 (03) : 357 - 378
  • [44] Partial functional linear quantile regression
    QingGuo Tang
    LongSheng Cheng
    [J]. Science China Mathematics, 2014, 57 : 2589 - 2608
  • [45] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [46] Partial functional linear quantile regression
    TANG QingGuo
    CHENG LongSheng
    [J]. Science China Mathematics, 2014, 57 (12) : 2589 - 2608
  • [47] Regularized linear censored quantile regression
    Minjeong Son
    Taehwa Choi
    Seung Jun Shin
    Yoonsuh Jung
    Sangbum Choi
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 589 - 607
  • [48] Quantile Regression under Local Misspecification
    Duan, Xiao-gang
    Wang, Qi-hua
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 790 - 802
  • [49] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    [J]. Lifetime Data Analysis, 2009, 15 : 357 - 378
  • [50] Composite Hierachical Linear Quantile Regression
    Chen, Yan-liang
    Tian, Mao-zai
    Yu, Ke-ming
    Pan, Jian-xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 49 - 64