Local linear quantile regression

被引:435
|
作者
Yu, KM [1 ]
Jones, MC [1 ]
机构
[1] Open Univ, Dept Stat, Milton Keynes MK7 6AA, Bucks, England
关键词
bandwidth selection; conditional quantile; kernel estimator; local linear regression; reference chart; rule of thumb;
D O I
10.2307/2669619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study nonparametric regression quantile estimation by kernel weighted local linear fitting. Two such estimators are considered. One is based on localizing the characterization of a regression quantile as the minimizer of E{rho(p)(Y-a)\X = x}, where rho(p) is the appropriate "check" function. The other follows by inverting a local linear conditional distribution estimator and involves two smoothing parameters, rather than one. Our aim is to present fully operational versions of both approaches and to show that each works quite well; although either might be used in practice, we have a particular preference for the second. Our automatic smoothing parameter selection method is novel; the main regression quantile smoothing parameters are chosen by rule-of-thumb adaptations of state-of-the-art methods for smoothing parameter selection for regression mean estimation. The techniques are illustrated by application to two datasets and compared in simulations.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 50 条
  • [31] ESTIMATION IN FUNCTIONAL LINEAR QUANTILE REGRESSION
    Kato, Kengo
    ANNALS OF STATISTICS, 2012, 40 (06): : 3108 - 3136
  • [32] Quantile Regression under Local Misspecification
    Xiao-gang DUAN
    Qi-hua WANG
    ActaMathematicaeApplicataeSinica, 2020, 36 (04) : 790 - 802
  • [33] Local asymptotics for nonparametric quantile regression with regression splines
    Zhao, Weihua
    Lian, Heng
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 209 - 215
  • [34] Quantile Regression under Local Misspecification
    Xiao-gang Duan
    Qi-hua Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 790 - 802
  • [35] Empirical Mode Decomposition Combined with Local Linear Quantile Regression for Automatic Boundary Correction
    Jaber, Abobaker M.
    Ismail, Mohd Tahir
    Altaher, Alssaidi M.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [36] Comparison Between Empirical Mode Decomposition and Local Linear Quantile Regression in the Presence of Boundaries
    Jaber, Abobaker M.
    Ismail, Mohd Tahir
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 1046 - 1050
  • [37] Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
    Geraci, Marco
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (13): : 1 - 29
  • [38] Optimal subsampling for linear quantile regression models
    Fan, Yan
    Liu, Yukun
    Zhu, Lixing
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1039 - 1057
  • [39] Power transformation toward a linear regression quantile
    Mu, Yunming
    He, Xuming
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 269 - 279
  • [40] On function-on-function linear quantile regression
    Mutis, Muge
    Beyaztas, Ufuk
    Karaman, Filiz
    Shang, Han Lin
    JOURNAL OF APPLIED STATISTICS, 2024,