Local linear quantile regression

被引:435
|
作者
Yu, KM [1 ]
Jones, MC [1 ]
机构
[1] Open Univ, Dept Stat, Milton Keynes MK7 6AA, Bucks, England
关键词
bandwidth selection; conditional quantile; kernel estimator; local linear regression; reference chart; rule of thumb;
D O I
10.2307/2669619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study nonparametric regression quantile estimation by kernel weighted local linear fitting. Two such estimators are considered. One is based on localizing the characterization of a regression quantile as the minimizer of E{rho(p)(Y-a)\X = x}, where rho(p) is the appropriate "check" function. The other follows by inverting a local linear conditional distribution estimator and involves two smoothing parameters, rather than one. Our aim is to present fully operational versions of both approaches and to show that each works quite well; although either might be used in practice, we have a particular preference for the second. Our automatic smoothing parameter selection method is novel; the main regression quantile smoothing parameters are chosen by rule-of-thumb adaptations of state-of-the-art methods for smoothing parameter selection for regression mean estimation. The techniques are illustrated by application to two datasets and compared in simulations.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 50 条
  • [21] Partial functional linear quantile regression
    QingGuo Tang
    LongSheng Cheng
    Science China Mathematics, 2014, 57 : 2589 - 2608
  • [22] Regularized linear censored quantile regression
    Minjeong Son
    Taehwa Choi
    Seung Jun Shin
    Yoonsuh Jung
    Sangbum Choi
    Journal of the Korean Statistical Society, 2022, 51 : 589 - 607
  • [23] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [24] Partial functional linear quantile regression
    Tang QingGuo
    Cheng LongSheng
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2589 - 2608
  • [25] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    Lifetime Data Analysis, 2009, 15 : 357 - 378
  • [26] Regularized linear censored quantile regression
    Son, Minjeong
    Choi, Taehwa
    Shin, Seung Jun
    Jung, Yoonsuh
    Choi, Sangbum
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 589 - 607
  • [27] Composite Hierachical Linear Quantile Regression
    Chen, Yan-liang
    Tian, Mao-zai
    Yu, Ke-ming
    Pan, Jian-xin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 49 - 64
  • [28] Quantile Regression under Local Misspecification
    Duan, Xiao-gang
    Wang, Qi-hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 790 - 802
  • [29] Composite hierachical linear quantile regression
    Yan-liang Chen
    Mao-zai Tian
    Ke-ming Yu
    Jian-xin Pan
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 49 - 64
  • [30] Composite Hierachical Linear Quantile Regression
    Yan-liang CHEN
    Mao-zai TIAN
    Ke-ming YU
    Jian-xin PAN
    Acta Mathematicae Applicatae Sinica, 2014, (01) : 49 - 64