On function-on-function linear quantile regression

被引:0
|
作者
Mutis, Muge [1 ]
Beyaztas, Ufuk [2 ]
Karaman, Filiz [1 ]
Shang, Han Lin [3 ]
机构
[1] Yildiz Tech Univ, Dept Stat, TR-34220 Esenler Istanbul, Turkiye
[2] Marmara Univ, Dept Stat, Esenler Istanbul, Turkiye
[3] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW, Australia
关键词
Basis expansion functions; function-on-function linear quantile regression; functional partial least squares regression; quantile covariance; quantile regression; PRINCIPAL COMPONENT REGRESSION;
D O I
10.1080/02664763.2024.2395960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present two innovative functional partial quantile regression algorithms designed to accurately and efficiently estimate the regression coefficient function within the function-on-function linear quantile regression model. Our algorithms utilize functional partial quantile regression decomposition to effectively project the infinite-dimensional response and predictor variables onto a finite-dimensional space. Within this framework, the partial quantile regression components are approximated using a basis expansion approach. Consequently, we approximate the infinite-dimensional function-on-function linear quantile regression model using a multivariate quantile regression model constructed from these partial quantile regression components. To evaluate the efficacy of our proposed techniques, we conduct a series of Monte Carlo experiments and analyze an empirical dataset, demonstrating superior performance compared to existing methods in finite-sample scenarios. Our techniques have been implemented in the ffpqr package in .
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Function-on-Function Linear Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 322 - 341
  • [2] Penalized function-on-function linear quantile regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Saricam, Semanur
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [3] Function-on-Function Partial Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Alin, Aylin
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 149 - 174
  • [4] Function-on-Function Partial Quantile Regression
    Ufuk Beyaztas
    Han Lin Shang
    Aylin Alin
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 149 - 174
  • [5] Statistical inference for function-on-function linear regression
    Dette, Holger
    Tang, Jiajun
    [J]. BERNOULLI, 2024, 30 (01) : 304 - 331
  • [6] Envelope Model for Function-on-Function Linear Regression
    Su, Zhihua
    Li, Bing
    Cook, Dennis
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1624 - 1635
  • [7] Function-on-Function Linear Regression by Signal Compression
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 690 - 705
  • [8] Restricted function-on-function linear regression model
    Luo, Ruiyan
    Qi, Xin
    [J]. BIOMETRICS, 2022, 78 (03) : 1031 - 1044
  • [9] Modern non-linear function-on-function regression
    Rao, Aniruddha Rajendra
    Reimherr, Matthew
    [J]. STATISTICS AND COMPUTING, 2023, 33 (06)
  • [10] Functional wavelet regression for linear function-on-function models
    Luo, Ruiyan
    Qi, Xin
    Wang, Yanhong
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3179 - 3216