Restricted function-on-function linear regression model

被引:2
|
作者
Luo, Ruiyan [1 ]
Qi, Xin [2 ]
机构
[1] Georgia State Univ, Sch Publ Hlth, Dept Populat Hlth Sci, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
historical function‐ on‐ function; optimal expansion; region selection; restricted function‐ function regression model;
D O I
10.1111/biom.13463
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The usual function-on-function linear regression model depicts the association between functional variables in the whole rectangular region and the value of response curve at any point is influenced by the entire trajectory of the predictor curve. But in addition to this, there are cases where the value of the response curve at a point is only influenced by the value of the predictor curve in a subregion, such as the historical relationship and the short-term association. We will consider the restricted function-on-function regression model, where the value of response curve at any point is influenced by a subtrajectory of the predictor. We have two major purposes. First, we propose a novel estimation procedure that is more accurate and computational efficient for the restricted function-on-function model with a given subregion. Second, as the subregion is seldom specified in practice, we propose a subregion selection procedure that can lead to models with better interpretation and predictive performance. Algorithms are developed for both model estimation and subregion selection.
引用
收藏
页码:1031 / 1044
页数:14
相关论文
共 50 条
  • [1] Envelope Model for Function-on-Function Linear Regression
    Su, Zhihua
    Li, Bing
    Cook, Dennis
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1624 - 1635
  • [2] Function-on-Function Linear Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 322 - 341
  • [3] On function-on-function linear quantile regression
    Mutis, Muge
    Beyaztas, Ufuk
    Karaman, Filiz
    Shang, Han Lin
    [J]. JOURNAL OF APPLIED STATISTICS, 2024,
  • [4] Smooth LASSO estimator for the Function-on-Function linear regression model
    Centofanti, Fabio
    Fontana, Matteo
    Lepore, Antonio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [5] Penalized function-on-function linear quantile regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Saricam, Semanur
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [6] Statistical inference for function-on-function linear regression
    Dette, Holger
    Tang, Jiajun
    [J]. BERNOULLI, 2024, 30 (01) : 304 - 331
  • [7] Function-on-Function Linear Regression by Signal Compression
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 690 - 705
  • [8] Adaptive smoothing spline estimator for the function-on-function linear regression model
    Centofanti, Fabio
    Lepore, Antonio
    Menafoglio, Alessandra
    Palumbo, Biagio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (01) : 191 - 216
  • [9] Adaptive smoothing spline estimator for the function-on-function linear regression model
    Fabio Centofanti
    Antonio Lepore
    Alessandra Menafoglio
    Biagio Palumbo
    Simone Vantini
    [J]. Computational Statistics, 2023, 38 : 191 - 216
  • [10] Modern non-linear function-on-function regression
    Rao, Aniruddha Rajendra
    Reimherr, Matthew
    [J]. STATISTICS AND COMPUTING, 2023, 33 (06)